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ABSTRACT 
Systems theory is now a mature part of the discipline of general systems engineering science, with a 
substantial amount of research effort having been undertaken in the last forty years - however there is 
still very little evidence of the widespread practical use of systems-theoretic methods within the 
engineering industry. This is despite there being strong evidence that many of the current problems in 
the delivery of acceptable (or even usable) large, complex, systems solutions result from a failure to 
apply a rigorous systems-science approach. 

This paper therefore introduces some practical ideas for the effective use of an established 
mathematical systems theory to the specification and design of engineered system solutions. In 
particular the following areas are explored: the capture of system requirement (and in particular ways of 
ensuring a proper and comprehensive specification of input/output requirements); the modelling of 
system (complicated) behaviours, including anomalous behaviours arising as a consequence of real 
system implementation; and the formal relationship between a comprehensive input/output requirement 
specification and the ‘complicated’ behaviours of the candidate system design solutions. 

An established theory of systems design, using formal constructs and set-theory notation, is used 
throughout this paper as the basis for the presentation of ideas. 

 

 

 

 

[Note: This research paper was first published in ‘Systems Engineering’, The Journal of The International Council on 
Systems Engineering, Volume 4, Number 1, 2001, pages 58 to 75, ISSN 1098-1241]  
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1.  Introduction 
Descriptions of the initial phases of a project life-cycle are variously described by a broad range of 
systems engineering standards and process models (e.g. EIA 632 1997, sect. 5.3 ‘System Design 
Process’). These phases can reasonably be summarised as follows: an initial capture of requirements; 
requirements analysis and validation; the identification of the candidate designs; and finally trade-off 
studies to select a ‘best’ (optimal) implementable system solution. 

It is well documented that even seemingly minor errors and omissions during the critical early 
stages of the project life-cycle can result in substantial delays and cost over-runs, frequently to the 
extent of undermining the chances of a successful conclusion to a project. Unfortunately, for many 
projects, this underlying ‘truth’ is only recognised or acknowledged in hindsight. A notable case in 
point was the failure of the inaugural launch of the Ariane 5 rocket, where ‘specification and design 
errors in the software of the inertial reference system’ necessitated the further expenditure of some 
$320million in management and engineering changes - in addition to the particular losses incurred for 
the launcher and payload (CNES/ESA report 1996, and Flight International 1996). 

Failures in system specification and design (as demonstrated by Ariane 501) are not unusual for 
large, complex systems. These types of failures have particular relevance to the discussions within this 
paper - in particular with regard to the problems of the proper capture of input/output requirements, and 
of the design modelling of complicated system solutions. This paper therefore specifically explores the 
way in which complicated behaviour (i.e. multiple, interrelated system modes of an implementable 
system design) can be expressed such that the satisfaction of complex functional requirements (in terms 
of the input/output requirements) can be determined in a rigorous, formal manner. 

The adoption of an established, and mathematically based, systems theory can provide the 
formulae, theorems and proofs required to underpin the systems engineering processes and decisions. 
An established systems-theoretic approach (Wymore 1993) is therefore employed extensively 
throughout this article to provide a substantiated and formal (mathematical) basis for the development 
of ideas. 

The content of this paper addresses the following topics with respect to the practical application of a 
systems-science methodology: 

a) Systems-theoretic principles, and characterisation of system design attributes (sects. 2 to 4). 

b) Specification of overall system requirements (sect. 5) 

c) Specification of the functional (input/output) system requirements (sects. 6). 

d) Satisfaction of the functional (input/output) system requirements by implementable system design 
(sect. 7). 

e) Specification and verification of design solution conformance with respect to complicated system 
behaviour of the implementable system solution (sects. 8 to 10). 

The paper concludes with an explanatory listing of the specific (systems theoretic) mathematical 
notation (sect. 12), and a worked-example in the form of the preliminary design of a gas-turbine (jet) 
engine (sect. 13). 

2.  Practicable Systems Theory 
The practical application of a ‘systems science’, particularly in terms of the use of a rigorously defined 
and comprehensive systems theory, is still not widespread within industry. For example, it has been 
observed that: 

Currently systems science appears to be directed towards problems solving in 
organisations but without reference to general problem-solving methods. It operates 
mostly in terms of descriptive, rather vaguely defined theoretical constructs and 
models which are difficult to relate to observations. As such, it operates at a 
metaphysical level, fragmented and remote from well-established branches of 
knowledge. [Korn 1997] 

This is an unfortunate state of affairs since the adoption of a mathematically-based systems theory 
can provide the formulae, theorems and proofs required to underpin the systems engineering processes 
and design decisions. In fact the application of a mathematically based systems theory to systems 
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design is a well researched and proven approach - the viability of which has already been extensively 
reviewed (for example: Klir 1996,  Bahill and Dean 1996, Fertig and Zapata 1977). 

It is most important that the theory underlying any general systems engineering (formal) method 
should be relevant to the problems being addressed. It must be able to adequately represent real 
physical phenomena where necessary, and must provide a practical means of deriving implementable 
system design solutions.  

Of course, it has to be accepted that even the most rigorous, scientifically based engineering 
methods will have their limitations. It is extremely difficult, if not impossible, to comprehensively 
codify any scientific method - however that does not prevent us from developing and applying certain 
practical rules, built on logical argument, and tested by observation, experiment and experience. 

Unfortunately many of the theoretical methods being actively promoted as ‘systems engineering’ 
formal methods are, in fact, closely associated with particular technologies (in terms of modelling 
paradigms and notation), or have limited scope (and, especially, with little or no reference to design 
optimisation), or are particularly concerned with specific implementable system design techniques (for 
example, for computer-based systems solutions). It would appear that these concerns are shared by 
Prof. Joseph Goguen who says in respect to general systems theory (GST) that:  

But it was (and still is) disappointing to me that so few people felt any need for 
concepts and theories of such generality; they seem happy to have (more or less) 
precise ideas about specific systems or small class of systems, with little concern for 
what concepts like system, behaviour and interconnection might actually mean 
[Calude 1998, page 98]  

It is therefore for these reasons, in particular, that this paper advocates the development and use of 
a general systems methodology - built upon basic axiomatic rules of mathematical systems theory. This 
should, as Professor Goguen puts it, address such modelling concepts as:  

.... system, behaviour, and interconnection, formalized in such a way as to include 
hierarchical whole/part relationships. [Calude 1998, page 98] 

Therefore an established systems theoretic approach (i.e. Wymore 1993) is employed extensively 
throughout this paper so as to provide a substantiated and formal (mathematical) basis for (and in 
particular) the development of ideas concerning complicated system behaviours.  

However, this paper is not intended to be a detailed exposition of systems theory - its primary 
purpose is to describe how an effective systems theoretic approach can be practicably applied to 
provide practical solutions to ‘real-world’ problems. The systems-theoretic mathematical formulations, 
their derivations, and the relevant theorems and proofs are available within the referenced systems 
engineering text  (Wymore 1993). 

3. Formal Method 
3.1   System Definitions and Specifications. The notion of system definition and system specification 
are concepts that are fundamental to the proper understanding and correct application of a systems-
theoretic system design method. It is therefore worthwhile to revue their meanings, and proper useage. 

The term ‘definition’ refers to providing a description of meaning (formal or informal) to some 
statement. The term ‘specification’ refers to the detailed description of a particular thing or instance. 
These literal meanings are therefore required to be reflected in the use of any mathematical expressions 
used within a ‘formal’ context. For example a system is defined (in the context of the systems-theoretic 
method used throughout this paper) as the quintuple: 

 Z = (SZ, IZ, OZ, NZ, RZ)      [3.1.1] 

- where this discrete form of a system model is defined in terms of sets SZ, IZ, and OZ for the system 
states, inputs, and outputs respectively - and the functions NZ and RZ for the next-state and read-out 
functions. This mathematical construct is clearly a definition - a generic ‘system’ description. 
Importantly, it also provides a definitive ‘template’ for specifications of particular system design 
solutions. 

These types of formal (mathematical) definitions can, in the context of systems engineering theory, 
be employed to describe the ‘meaning’ of a wide range of theoretical constructs, including requirement 
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specifications, systems (as above), system resultants (of complex designs), system modes of behaviour, 
design implementation, optimal system solutions - and so on. 

A systems engineering specification, therefore, will be a particular example (instance) of a 
systems-theoretic construct, with its elements given specific sets of attributes, and specific functional 
relationships, expressed according to the (mathematical) rules of the appropriate, and particular, 
definition for that construct. 

3.2   Semantics and Syntax. System design requires an ability for the imaginative creation of mental 
models of systems engineering constructs. These ‘imagined’ solutions are required to provide 
sufficiently accurate representations of the real-world phenomena (for example, the system behaviours) 
and be formally recorded (i.e. using mathematical, grammar, graphical rule, etc.) in a widely 
understood, communicable language, that provides appropriate contextual meaning (semantics), within 
an established set of rules (syntax). 

It is therefore widely accepted that ‘formal method’ refers to any specification and design method 
that incorporates a logically consistent set of rules - for example we have from the following definition 
provided by J. P. Calvez: 

 Formal Models: A system may be specified by a set of statements expressed in a 
formal language (grammar rule, algebra rule, etc.). [Calvez 1993, pp. 160] 

Indeed it could be conceivably argued that (for example) engineering drawings are a type of formal 
method of design specification - with the graphical constructs prescribed by certain rules, and given 
precise contextual meaning.  

However, the interest here is obviously in terms of a mathematical formal method with, in this 
case, the mathematical statements prescribed by fundamental (axiomatic) rules, and given precise 
meaning - in terms of the systems-theoretic definitions. 

3.3   Proof of Correctness. Systems engineering is an engineering science (a ‘formal method’ for 
engineering design) and as such there is a need for the particular design artefacts to be proved to have 
been properly derived and specified. There is, of course, nothing new here - it is a long-accepted part of 
the practice of recording ‘design rationale’ (of keeping, for example, engineering log books for the 
duration of a system’s development and operational life). It is therefore by such means that the 
references, assumptions, mathematical derivations, and particular proofs (of correctness) can be 
formally recorded. 

It is proposed that the proper venues for confirming that ‘proof of correctness’ has been established are 
the system design reviews and design audits routinely carried out at various stages of the design 
process. It is unfortunate that too often these reviews and audits can turn out to be little more that a 
check that the design task follows some predetermined plan (or ‘procedure’). Indeed there is a real 
danger that design reviews can often involve little more than the ‘ticking off’ of completed tasks, with 
little proper regard for providing a system design ‘proof of correctness’. 

4. System Complexity and Complication 
There are two particular properties of ‘real world’ systems that often cause system designers significant 
problems. These can be broadly categorised as system complexity and system complication. An 
overview of these concepts, in systems-theoretic terms, is given below. 

4.1  Systems-theoretic System Complexity. It is proposed that a ‘measure’ of system complexity can 
be formally expressed in terms of a component count (Shell, 1999). Although this might at first seem to 
be a rather ‘un-scientific’ proposition it is, in fact, an entirely apposite and mathematically rigorous 
(systems-theoretic) definition. However care must be taken not to misinterpret this description - this is 
not simply a tally of the number of physical parts of a system. The ‘components’ are, in themselves, 
formally identifiable as individual (non-trivial) systems, with their own behavioural characteristics. In 
terms of the given systems-theoretic modelling paradigm - ‘system components are component 
systems’. 

complexity ⇒ many components ⇒ mode (behaviour) hologenicity 

It is in this context that the concept of complexity in terms of the interactions of the behavioural 
modes of the components, such that an overall system mode of behaviour is exhibited, is formally 
introduced (i.e. system mode hologenicity). 
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It is not intended to include the issues of design complexity within this paper. Although it forms an 
essential part of the systems-theoretic systems design process, it has already been comprehensively 
addressed elsewhere (for example, see Wymore 1993, chapters. 3 and 5). Systems complexity is not 
specifically relevant to the subject matter of this paper. 

4.2  Systems-theoretic System Complication. A complicated system is defined as an implementable 
system solution that, at a particular level of abstraction, is perceived to exhibit many different modes of 
behaviour. The concept of  system complication can be formally captured in terms of the number of 
modes of the system that have to be expressed in order to comprehensively describe the system’s 
functional behaviour. 

complication ⇒ many (behaviour) modes ⇒ many mode interactions 

For the purpose of this study, a complicated system is therefore defined as a system whose overall 
functionality is best described in terms of multiple modes of operation, each of which exhibits a 
different, and distinct, pattern of behaviour. 

For complicated systems the principal concern is of ensuring reachability and sustainability of the 
required (multiple) system modes - such that the functional behaviour of the implemented system can 
provide complete (or at least more extensive) satisfaction of the functional system design, and hence of 
the input/output requirements.  

It is the problems that arise in the design and implementation of complicated systems that is 
specifically addressed within later sections of this paper. 

5.  System Requirements 
5.1   Requirements Specification. In terms of the systems-theoretic method used throughout this paper 
(i.e. Wymore 1993), the overall system requirement is defined in the form of a sextuple:  

  SDR = (IOR, TYR, PR, CR, TR, STR)     [5.1.1] 

- where IOR is an input/output requirement, TYR a technology requirement, PR a performance 
requirement, CR a cost requirement, TR a trade-off requirement, and STR a system test requirement. 

Therefore, specifying a particular input/output requirement involves using the IOR formulation to 
describe, for every possible (identifiable) system input trajectory, a set of eligible output trajectories. 

A technology requirement will be specified in terms of a particular set of (complex) system models 
that describe the technological solutions that are mandated (or, as is more usual, prohibited) in terms of 
acceptable component choices and design architectures (the TYR). The system designer is therefore 
constrained to use specific component designs in order to build a resultant system solution. 

The performance, cost, and trade-off requirements (PR, CR and TR respectively) are all defined in 
terms of comparative orders over a set of candidate system solutions, such that preference between any 
two systems can be expressed. These requirements are therefore generally specified using real-valued 
functions of the performance and cost figures of merit, determined for the particular candidate set of 
implementable system solutions. 

The system test requirement (STR) is used to specify the tests to be conducted so as to 
demonstrate design conformance, and real implemented system compliance, to the requirement 
specification. The extent (coverage) of testing and the test procedures will, of course, be agreed 
between the various system stakeholders (notably the system operators). It is also noted that in the 
referenced methodology (Wymore 93) that the need for testing is incorporated into the processes of the 
development of the candidate designs, and to the identification of the optimal system solution. 

The process of identifying acceptable candidate system design solutions will therefore be formally 
defined in terms of the identification of those ‘buildable’ system designs that can satisfy the technology 
requirement - and that can exhibit a mode of behaviour consistent with an elaboration of some 
functional system design, such that the input/output requirement is satisfied (see section 7).  

5.2   Requirements Validation. The specification of requirements and the specification of the 
compliant system solutions are obviously inextricably linked. All system design possibilities will be 
directly determined by a detailed specification of requirements - and the requirements will themselves 
be validated by the identification of at least one implementable system solution. Every effort should 
therefore be made to complete a detailed, and validated, description of the system-level requirements. 
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The validation of requirements is more than ensuring the (provably) correct derivation and 
specification of requirements in terms of some formal language. The danger of relying solely on the 
(verifiably) correct use of formal method is that the requirements can merely become a ‘wish-list’ - 
albeit expressed in a rigorously precise and consistent (formal) way. We need to be sure that the 
requirements are specifying something that is functionally achievable, and which is technologically 
buildable (that does not contravene accepted laws of physics, for example). 

For example, in a recent paper that explores the process of systems engineering we have the 
following description of ‘requirement validation’: 

Validating requirements means that the set of requirements is consistent, that a real-
world solution can be built that satisfies the requirements, and that it can be proven 
that such a system satisfies its requirements. If Systems Engineering discovers that 
the customer has requested a perpetual-motion machine, the project should be 
stopped. [Bahill, Dean 1996] 

Of course it should be obvious that to validate the requirements involves identifying a feasible 
system solution. That is fundamentally what this activity is all about - to show (in formal terms) that 
the implementability space (as specified by the input/output and technology requirements) is not 
empty. It is also the case that (subsequently) the candidate system design solutions will also have to be 
shown to be feasible system solutions with respect to these same (validated) requirements criteria. 

We must take care not to confuse the attribution of ‘feasibility’ with the activities of ‘requirements 
validation’ and of  ‘system designs identification’ (for example: EIA 632-1, 1997 sect. 5.3.1.2. ‘Define 
and Validate System Technical Requirements’, and subsequently EIA 632-1, sect. 5.3.2. ‘Design 
Definition Activity ... determine potential solution alternatives’). Both of these activities are concerned 
with identifying feasible system solutions (which may, or may not, already exist). 

It should be noted that we need only to identify one feasible solution to validate the requirements, 
and also that that solution may already (physically) exist. However it might not be a viable candidate 
solution - for other than engineering reasons (i.e. legal, ethical, business, etc.). 

6.  The Satisfaction Of Input/Output Requirement 
6.1   Input/output Scope. A major difficulty faced by a system designer is that of ensuring that the 
input/output requirements adequately describe the ‘real’ problem - in terms of capturing the input 
trajectories that the system will be responsive to, and specifying the resultant output trajectories that the 
system is allowed to produce. It is this problem (and in particular the inclusion of the system 
behaviours that result from ‘non-operational’ or ‘anomalous’ input trajectories) that is specifically 
addressed by this paper.  

To attempt to limit (or ignore) the true scope of the input/output specification courts disaster. For 
example, we have the following statement within the Ariane 501 Inquiry Board report which (it is 
suggested) is very pertinent to the arguments contained above: 

The specification of the inertial reference system and the tests performed at 
equipment level did not specifically include the Ariane 5 [flight] trajectory data. 
Consequently the realignment function was not tested under simulated flight 
conditions, and the design error was not discovered. [CNES/ESA 1996, sect 3.1.r] 

Systems theory (e.g. Wymore 1993, chapter 6) provides for a mathematically rigorous approach to 
the specification of an input/output requirement (IOR). In essence this involves the use of an 
‘eligibility’ function (ER) such that for every identified system input trajectory (i.e. f ∈ ITR where ITR 
= FNS(TSR,IR) ) a set of eligible output trajectories can be expressed (i.e. ER(f), where ER(f) ⊆ 
OTR is a sub-set of the output trajectories, and OTR ⊆ FNS(TSR,OR)). A rigorous, comprehensive 
and detailed functional specification is therefore possible using the mathematical elements of the 
input/output requirement (IOR).  

As will be seen later (section 7) it is the system designer’s task to identify functional system designs 
(FSD) which, if presented with an input trajectory f (where f ∈ ITR) will respond with an ‘eligible’ 
output trajectory g (where g ∈ ER(f)). 

An important advantage of using a formal (mathematical) approach to the definition of the 
input/output requirements (IOR) is that the method does not impose any limitations with respect to the 
size of the problem (as is often the case with textual or graphic-based formal methods). The proper use 
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of mathematical systems theory will also ensure that the expression of the input/output requirements 
can be rigorously, comprehensively and concisely specified. 

For example, given that an input trajectory ITR is defined as a subset not empty of FNS(TSR, IR) 
- where TSR = IJS[0, OLR), the life-cycle operation phase is  OLR ∈ IJS+ ∪ {∞} and where IR is the 
set of inputs of the IOR, then the following (simple) example provides a specification of a complete set 
of input trajectories -  in this case, as constant inputs with values over the range of real numbers of 0.0 
to 10.0. 

 IR = RLS[0.0,10.0] and OLR = ∞ 

 ITR = {f : f ∈ FNS(TSR,IR), there exists p ∈ RLS[0.0,10.0] such that f = CNS(TSR,p)} 

Incidentally, it should be noted that in this example an infinite number of input trajectories are 
specified, i.e. such that  #(ITR) = ∞  

It is important that the IOR should include the required (or permitted) responses of the system to 
all identified inputs. This includes ‘anomalous’ input trajectories that are not desired or expected ‘user’ 
input demands, but which are physically feasible (such as those arising from fault or failure conditions 
of other, externally-connected, systems). 

System designers, who attempt to determine a set of possible candidate systems designs on the 
basis of an incomplete or insufficiently detailed definition of the IOR, should therefore accept the risk 
that they may encounter significant (perhaps insurmountable) difficulties - for reasons that are 
summarised below. 

6.1  Maintenance Of System Candidature. What happens if it is decided to reduce the range of 
permitted system outputs, after a set of (previously acceptable) candidate designs have been 
determined? 

A deletion from the sets of eligible output trajectories (i.e. to produce a proper subset of ER(f)) 
may mean that a previously acceptable set of candidate functional designs (FSDs) may no longer apply 
- one (or more) system solutions may not now be allowed. To ensure that the full (original) set of 
possible FSDs is retained may necessitate the deletion of the corresponding input trajectory, or 
trajectories, from the previously accepted requirement specification (i.e. f ∈ ITR). The alternative 
might have to be to accept a reduced set of candidate designs. 

This conclusion is consequential upon the formal definitions for IOR sub-requirements and super-
requirements (Wymore 1993, sects. 6.50, 6.51). 

6.2  Extensions Of The IOR. What are the possible consequences if it is decided to make (later) 
additions to the input/output requirement? How does this effect the current candidate designs? 

Because of the inclusive nature of the IOR, no new FSDs should become eligible since they would 
already be candidate FSDs for the original IOR. This is very important since the inference is that as the 
IOR definition is made more ‘complete’, then the number of potential candidate FSDs will decrease 
(or may possibly remain the same) - but should definitely not increase in number. Therefore, any 
addition to the IOR set of input trajectories, together with the corresponding (eligible) output 
trajectories, may disqualify some of the original FSDs.  

For example, it could be argued that decisions made on code re-use for Ariane 5 (or, more 
particularly, on the retention of redundant code and the lack of comprehensive design rationale) was a 
major contributory factor in the system failure. In particular the Inquiry Board report states that: 

The same requirement [for continued IRS gyro-compass alignment calculations after 
lift-off] does not apply to Ariane 5, which has a different preparation sequence and it 
was maintained for commonality reasons, presumably based on the view that, unless 
proven necessary, it was not wise to make changes in software which worked well on 
Ariane 4. [CNES/ESA 1996, sect 2.2, para. 10] 

Therefore, in the case of Ariane 5 we have a functional system design that was presumably compliant 
on the basis of an original IOR specification (for Ariane 4) but which was not an acceptable system 
solution for an IOR extended to encompass the Ariane 5 flight envelope. 

6.3  IOR Elaboration. It is not uncommon for initial design studies to be undertaken on the basis of a 
simplified (un-elaborated) set of input/output requirements. The IOR is correctly ‘scoped’ in terms of 
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the number of input and output ports, their general content, and the relationships between input 
trajectories and corresponding (eligible) output trajectories. For example, we may begin with an 
original input set of the form: 

IRoriginal = {low power, op power, excess power} where #(IRoriginal) = 3 

However, the IOR is then subsequently elaborated during the course of further systems analysis work. 
For example, the above input may be elaborated into the form: 

IRelaborated = RLS[0.0,16.0) ∪ RLS[16.0, 32.0) ∪ RLS[32.0, 50.0) such that #(IRelaborated) = ∞ 

- where this input homomorphism (i.e. IRoriginal = HI(IRelaborated) ) would be reflected in a 
corresponding change to the eligibility function (ER), so as to maintain the input/output relationships. 
The output set OR could also, of course, be subject to elaboration. What, then, are the possible 
consequences of this elaboration of the input/output requirements? 

Consider first the case where no functional system designs (FSDs) can be identified so as to satisfy 
the original IOR. The consequences of a later elaboration of the IOR (consistently undertaken such that 
IORoriginal = HIMIO(IORelaborated, HI, HO)) may be that viable functional system designs are (now) 
found to be possible. The danger is, of course, that without the necessary IOR elaboration, work may 
be prematurely abandoned on the false premise that no system solution is possible. 

Consider, also, the alternative scenario where functional system designs (FSDs) are identified that 
satisfy the IOR. In this case the consequences of a later elaboration of the original IOR may be that no 
viable functional system designs are (now) possible. The danger is therefore that much nugatory work 
might be undertaken before it is realised that no viable system solutions are, in fact, possible (at least 
with respect to the requirements as defined). 

These observations on the possible consequences of IOR ‘elaboration’ are based on, and consistent 
with, ideas developed within the referenced systems theory (e.g. Wymore 1993, sects. 6.71 to 6.77). 

6.4  IOR ‘Completeness’. Is it possible to be sure that the input/output requirement is ‘complete’?  

Although it is entirely possible to prove that any given input/output requirement is completely 
specified, it is not possible to prove that the ‘complete’ input/output requirement has been captured (i.e. 
to prove that ‘the thing is being done right’, but not that ‘the right thing is being done’). There is no 
practical way of testing for requirements ‘completeness’: 

We know of no objective criteria for determining the completeness of requirements. 
[Garcia, Laplue, Rhodes 1995, p 402, “Determining Requirements Completeness”] 

We cannot know that the requirement is incomplete, without knowing what the complete 
requirement is. Unfortunately a part of the requirement can be omitted (from the SDR) without 
affecting the consistency, correctness or validity of the remaining requirement specification. 

However this is not an argument for a laissez-faire approach to requirement capture - every effort 
should be made to complete a detailed description of the ‘system-level’ input/output requirements 
before any design process is begun (for the reasons given above).  

Unfortunately it is common practice to engender an expectation that the system requirements are 
very likely to be incomplete at the start of the design process. For example: an ‘eighty per cent rule’ is 
increasingly being used as the requirements-capture criteria for commencement of each next design 
iteration. Indeed it is often planned that the customer’s requirements will be ‘firmed up’ as the 
preliminary designs and prototypes are developed and demonstrated. 

It is the author’s considered opinion that this use of prototyping (and simulation/emulation) to elicit 
requirements is an unsound and unsafe approach to requirements capture. The tendency is that the 
‘problem’ then becomes one of making the prototype acceptable to the customer instead of 
concentrating on the identification of the true (technology-independent) customer requirement - 
including the essential input/output requirement. To quote from Alan Cooper: 

You can get a better design with pencil and paper and a good methodology than you 
can with any amount of prototyping. [Cooper 1999, pp. 56]  

However prototyping can certainly have an important part to play in the system design process - 
particularly in terms of requirements validation, design model verification, and in the comparative 
assessment (trade-off studies) of the candidate system solutions. 
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7.  The Identification Of Implementable System Designs 
The principal objective here is to develop an implementable system design (ISD) in the form of a 
mathematical description of a technological solution that satisfies a functional requirement (as 
prescribed by an input/output requirement, IOR). 

The technology requirement (TYR) is used to specify the technologies that are mandated (or, as is 
more usual, prohibited) in terms of acceptable component choices and design architectures. The system 
designer is therefore constrained to use a sub-set of available component designs to build the resultant 
system solution. 

Obviously there may be more than one (possibly many) implementable system design solutions 
that satisfy both the input/output requirement and the technology requirement. These candidate system 
solutions will be subject to trade-off studies using the performance (PR), cost (CR) and trade-off 
requirements (TR) so as to determine the ‘best’ (or an optimal) system solution. 

An acceptable and implementable system design (ISD), built using the permitted (and possibly 
mandated) technology (TYR), therefore has to be able to exhibit a mode of behaviour that provides for 
a functional system design (FSD) solution that will satisfy the IOR, as illustrated in figure 1. 

In system theoretic terms a system (e.g. ZF ) is implemented by any buildable system design (e.g. a 
system ZI that satisfies the technology requirement TYR) which is capable of exhibiting a mode of 
behaviour (Zin) such that the implemented system  (ZF ) is a homomorphic image of the exhibited 
system mode. It should be noted that a homomorphic image of a system is a system that exhibits the 
same functional capability as that system - in this case defining the functional equivalence between Zin 
and ZF. A formal description of system implementation is available within the referenced text (i.e. 
Wymore 1993, sections 5.69 to 5.75) 

For the exhibited function (ZF) to be able to satisfy the input/output requirement it will be 
necessary to also specify a start condition (system state DSZ) and a time-scale for the function duration 
(TSZ). Therefore, if ZI can effectively express a functional system design (FSD) that satisfies the 
input/output requirement, where FSD = (ZF,DSZF,TSZ), ZF is the implemented system function, DSZ 
is the initial state and TSZ is the system time-scale of satisfaction - then ZI provides for an 
implementable design solution that satisfies both the input/output (IOR) and the technology 
requirement (TYR). 

[Note that in the referenced systems theoretic method the ZF, ZI  and ZIn  system models are all 
expressed in the form of discrete system models - see section 3.1] 

The initial (i.e. ‘start-up’) conditions for the functional design solution are defined as the state 
DSZF, where DSZF ∈ SZF. In terms of the initial conditions for the implementable system solution 
(ISD) provided by ZI , the initial conditions will be a set of states given by the homomorphic 
relationship:  

 SI ⊆ SZIn, where HS(SI) = DSZF      [7.0.1] 
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It is required that the sets of inputs and outputs defined for the IOR and the FSD are identical to 
ensure proper conformance to the functional requirements. This will therefore necessitate the 
homomorphic mapping between ZI  and ZF  being of a form defined by:  

 HI(IZI) = IZF , and IZF  = ID(IR),  

 HO(OZI) = OZF , and OZF = ID(OR).     [7.0.2] 

The implications of the above assertions is that the designer must endeavour to ensure that the 
proposed real (implementable) system solution is capable of exhibiting behaviour that completely 
satisfies the functional requirement of the IOR (i.e. over the whole of the input/output operational time-
scale). Ways of addressing this problem are explored in the remainder of this paper. 

8.  Invoking System Function 
The following mathematical developments are directly concerned with the expression of ‘complicated’ 
behaviours of an implementable system design  - and of describing how these behaviours can be shown 
to satisfy the input/output requirement. 

The required system function (i.e. the FSD) is provided by means of an exhibited mode of 
behaviour of the implementable system design (ISD). However this mode of behaviour does not 
necessarily encompass all possible behaviours of the ISD - there may be other ‘non-operational’ 
behaviours that are different, and distinct, from those required to satisfy the particular IOR. These are 
introduced as a necessary consequence of the technology of the implementable system design (for 
example ‘diagnostic test’ or ‘calibrate’) - or they may be necessary such that the implementable system 
has the capability of providing other, alternative, functionality (i.e. to serve some ‘other purpose’). 
Additional ‘anomalous’ modes of behaviour, that are manifest as a result of the physical limitations of 
the system design (including fault or failure modes), may also be exhibited by the implemented system.  

It is therefore important that the possibility of transference between the required FSD mode and 
these other behavioural modes (i.e. the ‘reachability’ of one mode from another) is adequately 
modelled.  

The systems theoretic approach can be used to express the system behaviour mode ZIn  - and this 
can include the conditions required to both sustain the mode, and for the ZIn mode to be reachable. This 
is developed using the parameterized form of system mode such that: ZIn = SYSMO(ZI,SMBFIn,OZIn), 
given the system mode behaviour function SMBFIn ∈ FNS(SZIn × IZIn, ITZI × TZ+

I), and where SZIn 
⊆ SZI, IZIn ⊆ IZI, OZIn ⊆ OZI, NZIn ⊆ NZI, and RZIn ⊆ RZI . 

The design task is, in effect, to specify the ZIn mode states, inputs, outputs, and (most importantly) 
the system mode behaviour function. The SMBF maps elements of the Cartesian product of mode state 
and input values (i.e. (x,p) ∈ SZIn × IZIn) to corresponding elements of system input trajectory and 
time-index values (i.e. (f,t) ∈ ITZI × TZ+

I) that are required to sustain that mode. The SMBF function 
will be specified either by an explicit set of functional pairings or (as would be more usual) by a 
generic mathematical expression of the required SMBF functional mapping. 

8.1  Direct Mode Transfer. The manner in which access to the required behavioural mode (e.g. ZIn) is 
achieved, and the conditions necessary to sustain the mode, are expressed through the identification of 
particular mode sub-domains. This process is described in formal terms by the development of the 
following expressions.  

If an implementable system design (e.g. ZI) exhibits a required mode (i.e. ZIn), together with some 
other modes (e.g. ZIm) such that: 

 ZIn = SYSMO(ZI,SMBFIn,OZIn), and ZIm = SYSMO(ZI,SMBFIm,OZIm), where 

 SZn|m = SZIn ∩ SZIm, and SZn|m ≠ ∅     [8.1.1] 

- then this defines all inter-mode transfer states between the two modes. [Note that if there exists a 
‘mode of a mode’, e.g. ZIm = SYSMO(Z1In,SMBFIm,OZIm), then by definition SZn|m = SZIn ∩ SZIm 
and SZn|m ≠ ∅ must follow since SZIm ⊆ SZIn.] 

If the sets of system states for two modes are disjoint (SZn|m = ∅) then direct transfer between the 
modes is not possible - however indirect transfer may occur via some other (intermediary) system 
modes. 
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8.2 Mode Transfer Reachability. An important design task is to specify the conditions under which 
inter-mode states are reachable from other parts of the mode domain (if at all). These conditions will be 
realised as a result of inputs to the system (including, possibly, ‘null’ inputs) in combination with the 
current mode states. Given that two system modes are as described above, the mode sub-domain 
conditions Dn→n|m for entry to the inter-mode states can be defined as follows: 

 Let Sn→n ⊆ (SZIn - SZn|m), and Dn→n = Sn→n × IZIn, such that  

 for every (x,p) ∈ Dn→n, if y = NZIn(x,p), and y ∈ Sn→n ,  

 then Dn→n|m = ((SZIn - SZn|m) × IZIn) - Dn→n    then 

 Sn→n|m = {y: for every y = NZIn(x,p), where (x,p) ∈ Dn→n|m, and y ∈ Szn|m} [8.2.1] 

- where Sn→n|m are the accessed inter-mode states on transfer out of ZIn to ZIm. 

Similarly, the mode sub-domain conditions for re-entry from the inter-mode states are defined as 
follows: 

 Let Sn|m→n|m ⊆ SZn|m, and Dn|m→n|m = Sn|m→n|m × IZIn, such that  

 for every (x,p) ∈ Dn|m→n|m, if y = NZIn(x,p), and y ∈ Sn|m→n|m  

 then Dn|m→n = (SZn|m × IZIn) - Dn|m→n|m 

 Sn|m→n = {y: for every y = NZIn(x,p), where (x,p) ∈ Dn|m→n, and y ∈ (SZIn - Szn|m)} 
          [8.2.2] 

- where Sn|m→n are the accessed states on transfer back into mode ZIn. 

The Venn diagram in figure 2 is a simple example of a dual-mode system that illustrates the system 
design constructs described above. It is used to show the state-space relationships between two system 
modes. For the purposes of clarity, only mode ZIn behaviour conditions are shown - the transfer 
conditions for mode ZIm could be developed and shown in exactly the same way. 

From the above expressions it is seen that since, by definition: 

 Sn→n  ⊆ (SZIn  - Szn|m) and  Sn|m→n|m ⊆ SZn|m   

 then it must be the case that 

 Sn→n  ∩ SZn|m = ∅ and 

 Sn|m→n|m ∩ (SZIn  - SZn|m) = ∅      [8.2.3] 

8.3  Isolating Mode Sub-domains. An isolating mode sub-domain is identified when the condition 
Dn→n ≠ ∅ is satisfied (and hence, by definition, Sn→n ≠ ∅). 
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A good example of an isolating mode sub-domain might be found in a system’s ‘power-up self-test’ 
mode. A detected critical failure would result in the system being prevented from entering an 
‘operational’ mode, regardless of the (operational command) inputs to the system. The system would 
have to be subject to (perhaps) ‘diagnostic test’, and/or decommissioned for repair. 

8.4  Inevitable Mode Transfers. It may be decided, however, to go further and specify that it would be 
undesirable to have any possibility of a ‘sustained’ system mode - in other words, to ensure that Sn→n = 
∅ for any sub-set of IZIn . How could this be specified? One way would be to broaden the definition for 
Dn→n  through an extension of equation [8.2.1] such that: 

 IZIn  ⊆ IZI  

 Sn→n  ⊆  (SZIn - SZn⏐m) then, for any  

 Dn→n = Sn→n × I’, where I’ ⊆ IZIn then 

 for every (x,p) ∈ Dn→n, then y = NZIn(x,p), and y ∈ Sn→n   [8.4.1] 

Then, in the particular instance where Dn→n = ∅ (and hence Sn→n  = ∅) there can be no sub-domain 
of mode ZIn  which can be sustained - regardless of the mode input trajectory. The mode behaviour will 
be such that it will  inevitably transfer to the inter-mode states SZn⏐m. 

An inevitable mode transfer may be stipulated where mode transfer is deemed to be mandatory. For 
example, an ‘over-speed’ mode of behaviour for an aircraft jet engine would be considered to be 
extremely hazardous (most certainly a ‘worst-case scenario’).  

The system designers may therefore stipulate an inevitable mode transfer to a safe ‘normal operating’ 
mode - which would therefore occur regardless of any further demanded inputs to the engine (see, for 
example, equation [13.3.3].). 

8.5 Other Transfer Possibilities. However it is interesting to note the possibility of the relationship: 
(Sn→n ∩ Sn|m→n) ≠  ∅, i.e. an ‘isolated’ mode sub-domain could be directly reachable from the mode 
transfer states (as shown in figure 2) - immediately inhibiting further mode transfers from ZIn to ZIm. 

Note also that it is possible for Dn→n|m = ∅ which would specify that transfer out from mode ZIn to ZIm 
is only possible from the intersecting states SZn|m. It is also possible for Dn|m→n = ∅  such that once that 
transfer states SZn|m are entered, then the ZIn mode will remain within those states regardless of the 
subsequent mode ZIn inputs (unless, of course, mode ZIm - or some other intersecting mode is engaged). 

9.  Function Initiation. 
The question remains of how to specify access to the mode ‘initiation’ states SI (i.e. those states SI 
defined by: HS(SI) = DSZF, and FSD = (ZF,DSZF,TSZ ), and where FSD satisfies the IOR as 
defined previously). In other words, how are the ‘initiation’ states SI to be reachable from regions of 
the mode domain of ZIn ?  

In fact, the same form of mathematical expressions as those developed above to define transfer 
possibilities between modes can be used: 

Let S’ ⊆ (SZIn - SI), and DS’ → S’ = S’ × IZIn, such that  

for every (x,p) ∈ D’, then y = NZIn(x,p), and y ∈ S’,  

then DS’ → SI = ((SZIn - SI) × IZIn) - DS’ → S’  then 

SS’ → SI = {y: for every y = NZIn(x,p), where (x,p) ∈ DS’ → SI, and y ∈ SI}  [9.0.1] 

- where SS’ → SI defines the immediately accessed ‘initiation’ states of SI. 
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Note that it is not necessarily required that SI can be reached only from within ZIn - it may be 
sufficient that the states SI are accessible by direct transfer from some other mode of ZI. Both scenarios 
are illustrated in figure 3, below. 

10.  Functional Partitioning 
It is often an expedient design strategy to partition the functional design into ‘function sub-domains’. 
The partitioning will usually reflect the operational requirements of the system user, as well as 
(perhaps) the physical characteristics of the implementable system solution. 

However, it should be noted that this concept of ‘functional partitioning’ is entirely distinct from 
‘functional decomposition’ - which is a consequence of design implementation (i.e. design complexity). 
The issues concerning system complexity, and of ‘functional decomposition’, are outside of the scope 
of this paper.  

As with the initial identification of the operational mode ZIn to provide satisfaction of the IOR, the 
partitioning of this implementation mode ZIn can be used to express both operational requirements, 
together with the various physical behaviours of the real, implementable system solution. 

10.1  Mode Sub-domains. It is proposed that the implementation of functional partitioning is 
represented in terms of mode sub-domains of the ISD mode such that, if ZIn is developed to represent 
the required overall mode of behaviour of the implementable system (as defined previously), then a 
mode ZIn’ can (by definition) be defined as follows: 

ZIn’ = SYSMO(ZIn,SMBFIn’,OZIn’), i.e. the parameterized system sub-mode, where 

SMBFIn’ ∈ FNS(D’, ITZI × TZI), such that  

SMBFIn’ ⊂ SMBFIn, where D’ ⊂ (SZIn × IZIn)     [10.1.1] 

This sub-mode will, together with the specified (and unmodified) homomorphic relationship, 
provide for an implementation of the sub-function ZF’  - such that ZF’ is implemented by ZI with respect 
to the system mode ZIn’ and the homomorphic mappings HS, HI and HO. [Note, therefore, that the 
overall system mode behaviour function (SMBFIn) and the homomorphic mapping (HS,HI,HO) remain 
unchanged. The only change required to express the partitioned behaviour of ZIn’ is in the specification 
of D’, the sub-domain of the mode ZIn.] 
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10.2 Sub-domain Reachability. Obviously the concept of ‘reachability’ can also be applied to the 
mode  ‘sub-domains’. The example illustrated in figure 4 shows the interaction of three sub-domains of 
a mode ZIn - i.e. for modes ZIn’, ZIn’’, and ZIn’’’. This example gives a graphic representation of the 
different conditions where transfer between the sub-modes may be possible, given the operating 
conditions. 

In the example illustrated in figure 4 the initial state space SI is shown as being directly accessible 
from either sub-mode ZIn’ or ZIn’’  since (in this case) SI ⊂ (SZIn’ ∪ SZIn’’). 

[It should be noted that the use of these mode transfer diagrams are for illustrative purposes only - 
they are not an acceptable substitute for the full mathematical definitions.]  

11. Functional Design Verification 
Previous sections of this paper have investigated methods of providing a comprehensive specification 
of the input/output requirements, and for specifying functional behaviour for candidate system designs 
- such that the input/output requirement can be satisfied.  

In particular these required system behaviours have been characterised in terms of modes, and mode 
interactions, of the implementable system solutions. In general terms these broad-based attributes of 
system behaviour are modelled as follows: 

a) System function - as an exhibited mode of the implementable system solution. 

b) Mode reachability. 

c) Isolated mode behaviours. 

d) Inevitable mode transfers. 

e) Sub-modes (functional partitioning). 

The modelling of these system behaviours therefore provides for the specification of general  ‘design 
rules’ with respect to the (complicated) functionality of the implementable system solution. 

It will be incumbent on the designers of the real, implementable system solution (and the system 
component designers) to provide proof that their implemented systems will actually exhibit the 
anticipated (and required) behavioural characteristics - prior to any commitment to manufacture. 

This conformation of ‘design correctness’ will be by means of theoretical analysis and/or by design 
model experimentation (system simulation/emulation) or by prototype demonstrations. 

For example, it may be possible to establish a substantial part of the fundamental behavioural 
characteristics of a candidate system design by theoretical analysis. Consider the case where the 
candidate system is implemented as a continuous system, and the design mode can be adequately 
modelled in terms of a linear, time-invariant system. The conventional control techniques of state-space 
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analysis can therefore be usefully used to examine the system mode behavioural characteristics of the 
system. The system mode is therefore modelled in the standard MIMO form as follows:  
and  where A is the system matrix, B is the distribution matrix, C is the output matrix, x is the 
state vector, y is the output vector and u is the input vector. 

For the attribute of ‘controllability’ to be satisfied, where ‘controllability’ is defined in terms of the 
ability to use system mode input trajectories to cause the system to ‘migrate’ from any arbitrary mode 
state to any other mode state, via some controlled state trajectory (see, for example Richards 1979, sect. 
7.2) then, for complete controllability, the following design conditions need to be satisfied:  

  [  B  :  AB  :  . . . . . .   :  An-1 B ]  must be of rank n, where n = #(x). 
A similar analytical procedure may be used to demonstrate complete system controllability for a 
‘digitally controlled’ continuous system implementation (see, for example: Franklin and Powell 1980, 
sect 6.7), or for a purely ‘digital/discrete’ system implementation (see, for example: Szidarovszky and 
Bahill 1992, sect. 5.2). 

[Note that the above analysis is in terms of mathematical modelling of the real, implementable design 
solutions. This is independent from the decision of using discrete modelling for the chosen systems-
theoretic method (see section 3.1) which is a consequence of the need to provide for unique 
mathematical solutions to certain systems-theoretic constructs, and is applicable regardless of the 
eventual form of system implementation  - i.e. continuous, digital, or hybrid.] 

If a system satisfies this criteria for ‘complete controllability’ then (by definition) it must be the case 
that all system mode states are reachable (i.e. Dn→n =  ∅) - there cannot be any ‘isolating’ mode 
domains (as defined in sections 8.2, 8.3).  

Similarly, since the condition of complete controllability is satisfied, then it must be possible to force a 
return to a previously exhibited system mode state - therefore a ‘controllable’ system mode cannot 
exhibit ‘inevitable’ mode transition (as defined in section 8.4). 

It should also be noted that, according to the ‘controllability’ criteria, that a system can be completely 
controllable, but a system mode might not be. Similarly, a system mode can be completely controllable, 
even when the system is not. For example, we may have the situation of a completely controllable 
system that exhibits a system mode with an ‘inevitable transition’ sub-domain. 

These issues of design validation and verification, in terms of confirmation of mode exhibition, 
reachability, and sustainability, as outlined in this section, are to be addressed in more detail in a 
forthcoming paper. In particular the practical use of a broad range of techniques are to be discussed - 
including theoretical analysis using established engineering science methods, the use of design 
experimentation/simulation, the discrete modelling of ‘continuous’ systems, the analysis of ‘hybrid’ 
systems, and problems regarding real number modelling.  
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12.   Notation 
The following table provides a summary of the systems-theoretic notation used throughout this paper. 
A more detailed description of these terms is available within the referenced text (i.e. Wymore 1993). 

 

{  ,  , ...   } Set 

∩  Intersection of sets 

∪  Union of sets 

⊆  is a sub-set of .... (the set) 

∅  The ‘empty’ set, also denoted as  {}  

⇒  ‘implies’ ... 

×  Cartesian product, for example: {1, 2}×{a, b} = { (1, a), (1, b), (2,a), (2, b) } 

∈  is a member of ... (the set), belongs to ... 

#  Number of elements of a set (or vector), the set ‘size’ 

BSD  Buildable System Design. 

CNS  Constant function, a constant value - over some specified timescale 

CR  Cost Requirement, an order over the space of implementable designs 

Dn  Mode sub-domain ‘n’, where Dn = SZkn × IZkn for mode ‘n’ of system ‘k’ 

Dn→m  Mode sub-domain ‘n’, from which mode sub-domain ‘m’ is reachable 

DSZ  Functional System Design, start state 

ER  Eligibility function (input/output requirement) 

FNS(A,B) Set of all functions, mapping from domain A over the range B 

FSD  Functional System Design 

HI  Input Homomorphism 

HIMIO  Input/output homomorphism, such that: HO(ERelaborated(f)) = ERoriginal(HI(f)),  
  f ∈ ITRelaborated 

HO  Output Homomorphism 

HIMSY  System homomorphism, such that: HS(NZelaborated(x,p)) = NZoriginal(HS(x), HI(p)), 
  for every x ∈ SZelaborated, p ∈ Izelaborated      
  and: HO(RZelaborated(x)) = RZoriginal(HS(x)), x ∈ SZelaborated 

HS  State Homomorphism 

ID  Identity Homomorphism 

IJS[j,k)  Set of integer numbers: { i : i ≥ j , i < k } 

IOR  Input/output Requirement 

IR  Input Requirement, the set of all inputs 

ISD  Implementable System Design 

ITR  Input Trajectory Requirement 

ITZ  System input trajectory, where ITZ = FNS(TZ, IZ) 

IZ  System Input set 

NZ  System next-state function, NZ ∈ FNS((SZ × IZ), SZ) 

OLR  Operational life (time) for the IOR. A non-zero integer value 
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OR  Output Requirement 

OTR  Output Trajectory Requirement 

OTZ  System output trajectory, OTZ(f,x) = RZ(STZ(f,x)) where f ∈ ITZ, x ∈ SZ 

OZ  System Output set 

PR  Performance Requirement, an order over the set of implementable designs 

RLS[x,y) Set of real numbers: { w : w ≥ x , w < y } 

RZ  System Read-out function: RZ ∈ FNS(SZ, OZ) 

Sn⏐m  Intersection of states of system modes ‘n’ and ‘m’ 

Sn→m  Mode ‘m’ states, directly accessed from mode ‘n’ states 

SDR  System Design Requirement 

SI  Implementable system mode state(s), to initiate input/output function exhibition 

SMBF  System Mode Behaviour Function  ∈ FNS((SZmode × IZmode), (ITZhost ×TZ+
host)) 

STR  System Test Requirement 

STZ  System state trajectory, STZ(f,x) ∈ FNS(TZ, SZ) where f ∈ ITZ, x ∈ SZ 

SYSMO  System Mode Parameterisation, such that Zkn = SYSMO(Zk, SMBF, OZkn) 

SZ  System States 

TR  Trade-off Requirement 

TSR  Input/output requirement time-scale set 

TSZ  Functional System Design time-scale 

TYR  Technology Requirement 

TZ  System time-scale 

TZ+
kn  System mode time index 

Zk  System ‘k’ 

Zkn  Mode ‘n’ of system ‘k’ 
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13.  Case Study - Aircraft Jet Engine Design 
The example of the preliminary analysis and 

design of an aircraft jet engine can be used to 
demonstrate some of the principles of system 
specification and design that have been discussed 
within this paper (note that this example is 
provided for demonstration purposes only - there 
is, of course, no intention to produce a ‘real’ 
system design solution). 

13.1 The Functional Design. We first suppose 
that the customer requirement is for propulsive 
thrust to be output in response to pilot throttle 
demands - and that this is to be expressed within 
the IOR specification. The inputs to the system 
may therefore be described in terms of the (pilot) 
throttle demand IRdemand, and the engine outputs 
as ORthrust. 

The overall objective is to identify an implementable system design that will provide a functional 
design solution (an FSD) that will satisfy the input/output requirement for the engine (see section 6.1), 
where: 

  IOR = (OLR, IRdemand,ITRdemand,ORthrust,OTRthrust,ER)   [13.1.1] 

[Note that an IOR construct, in terms of the operational life (OLR), the input and input trajectory 
sets (IR, ITR), the output and output trajectory sets (OR, OTR), and the eligibility function (ER) is 
fully described in the referenced text (Wymore 1993, sect. 6.5).] 

13.2 An Implementable Design Solution. An implementable engine design solution is expressed as a 
mathematical model of a physical solution  (i.e. ZJET) that exhibits a mode of behaviour (ZNORM) to 
provide for an FSD solution that satisfies the IOR (see sect. 7.2), where: 

 ZNORM = SYSMO(ZJET, SMBFNORM, OZNORM) where OZNORM ⊆ OZJET and where 

 SMBFNORM ∈ FNS(SZNORM × IZNORM, ITZJET × TZ+
JET) 

 ZF = HIMSY(ZNORM, HS, HI, HO) 

 FSD = (ZF, DSZ, TSZ) and 

 DSZ = HS(SI), SI ⊆ SZNORM and TSZ = TSR and  

 IRdemand = HI(I1ZJET) and ORthrust = HO(O1ZJET)    [13.2.1] 

The inputs to the implementable engine design solution are extended to include the air mass-flow 
I2ZJET, the provision of external power I3ZJET, and the provision of fuel I4ZJET. Similarly, the outputs 
are extended to include an auxiliary power output O2ZJET. 

 The input and output sets for the implementable system design ZJET are therefore given as the 
following Cartesian products of system inputs and outputs: 

 IZJET = I1ZJET × I2ZJET × I3ZJET × I4ZJET  and 

 OZJET = O1ZJET × O2ZJET      [13.2.2] 

- and the system input and output trajectories as: 

 ITZJET = FNS(TZJET, IZJET) and 

 OTZJET(f,x) = RZJET(STZJET(f,x)) where f ∈ ITZJET and x ∈ SZJET  [13.2.3] 

13.3 Design Complication (Engine Behaviours). The engine modes will reflect both the required 
behaviour to satisfy the IOR input/output requirement, together with other behaviours that result from 
the implementable system design. For the purpose of this study, therefore, the engine modes are 
described as: (1) the engine normal operation ZNORM ; (2) and engine stall ZSTALL  and (3) an engine 
over-speed ZO/SPEED. The actual form for the engine ‘normal’ mode function (SMBFNORM) would, of 
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course, be required to be identified by the system designer. The other principal engine modes ZSTALL 
and ZO/SPEED are similarly specified. 

The designer then specifies the mode sub-domains such that: 

 IZO/SPEED ⊆ IZJET  then 

 DO/SPEED→NORM⏐O/SPEED  = (SZO/SPEED - SZ NORM⏐O/SPEED) × IZO/SPEED  - DO/SPEED→O/SPEED 

 DO/SPEED→NORM⏐O/SPEED  ≠ ∅ (and assuming DO/SPEED→O/SPEED  = ∅), therefore 

 SZ NORM⏐O/SPEED  ≠ ∅ and SZO/SPEED ⊄ SZNORM and SZO/SPEED ≠ SZNORM [13.3.1] 

This result is not surprising. It is effectively stipulated (in the third line) that if the engine over-
speeds, then a capability of reverting to normal operation is to be possible. This analysis confirms that, 
if there is no ‘isolated’ over-speed mode sub-domain, then for this particular control to be realisable, 
the engine over-speed states must not be defined as a sub-set of normal operation - which, of course, is 
intuitively correct. 

The designer further stipulates that: 

 IZO/SPEED ⊆ IZJET 

 DNORM⏐O/SPEED→O/SPEED =  (SZNORM⏐O/SPEED × IZO/SPEED)  - DNORM⏐O/SPEED→NORM⏐O/SPEED  

 DNORM⏐O/SPEED→O/SPEED = ∅ therefore 

 (SZNORM⏐O/SPEED × IZO/SPEED )  = DNORM⏐O/SPEED→NORM⏐O/SPEED  since  

 SZNORM⏐O/SPEED  ≠ ∅       [13.3.2] 

Again, this result is not surprising. It is stipulated (in the third line) that the implementation is to be 
such that an over-speed condition is not to be reachable from normal operation. This analysis confirms 
that for this to be possible then any ‘over-speed’ behaviour is constrained to remain within the 
intersecting (boundary) states (i.e. SZNORM⏐O/SPEED) - assuming, that is, that the set-spaces for the 
normal and over-speed modes are not disjoint. Once again these conclusions are intuitively correct. 

It may be decided, however, to go further and specify that it would be undesirable to have any 
possibility of a ‘sustained’ engine over-speed - in other words, to ensure that SO/SPEED→O/SPEED = ∅ for 
any sub-set of IZJET . This can be achieved by use of the ‘inevitable transfer’ scenario, as discussed in 
section 8.5. We then have the following model constructs: 

 IZO/SPEED  ⊆ IZJET  

 SO/SPEED→O/SPEED ⊆ (SZO/SPEED - SZNORM⏐O/SPEED)  then, for any  

 DO/SPEED→O/SPEED = SO/SPEED→O/SPEED × I’, where I’ ⊆ IZO/SPEED  then 

 for every (x,p) ∈ DO/SPEED→O/SPEED, then  

 y = NZO/SPEED(x,p), and y ∈ SO/SPEED→O/SPEED    [13.3.3] 

Then, in this particular instance, the expression 
DO/SPEED→O/SPEED = ∅ is taken to mean that there can be 
no sub-domain of mode ZO/SPEED in which an over-
speed condition can be sustained (regardless of the 
engine input trajectory). Engine operation is to be such 
that it will  inevitably revert to a ‘safe operating 
condition’ within state-space SZNORM⏐O/SPEED. 

The other  interactions between the engine modes 
ZNORM and ZSTALL and between ZSTALL and ZO/SPEED 
may be developed in a similar manner as for the 
interactions between ZNORM and ZO/SPEED developed 
above. 

13.4 Normal Operation Sub-modes. A ZNORM engine mode may be implemented in the design of a 
real system solution that provides the function of ‘controlled engine thrust’ - with a pilot input of 
throttle position to initiate engine start, modulate the thrust, and to shut-down the engine.  
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It might therefore be judged to be expedient to represent the provision of this function in terms of 
sub-modes, such as: (1) engine unassisted run-up or run-down ZFREE; (2) assisted engine run-up ZASST; 
(3) engine ignition ZIGN; (4) thrust operation ZTHRUST. These sub-modes would therefore be expressed 
in terms of the mode ZNORM, for example: 

 ZTHRUST = SYSMO(ZNORM, SMBFTHRUST, OZTHRUST) and  

 OZTHRUST ⊆ OZNORM       [13.4.1] 

- with similar expressions for ZFREE, ZASST, and ZIGN. 

These sub-modes of ZNORM are defined in terms of the sub-mode domains and inputs required to 
sustain them (as per the form defined by equation [10.1.1]) as follows: 

 SMBFTHRUST ⊂ SMBFNORM  and DMN(SMBFTHRUST) ⊂ (SZNORM  × IZNORM) [13.4.2] 

- and again, with similar expressions for SMBFFREE, SMBFASST, and SMBFIGN. 

The interactions between the engine operational sub-modes is defined in terms of the intersection 
of sub-mode states, together with definitions for sub-domains as follows: 

 SZFREE⏐ASST ≠ ∅, SZASST⏐IGN ≠ ∅, SZIGN⏐THRUST ≠ ∅, SZTHRUST⏐FREE ≠ ∅, 

 SZFREE⏐IGN ≠ ∅, SZASST⏐THRUST  = ∅, and 

 DFREE→FREE⏐ASST ≠ ∅, DASST→FREE⏐ASST ≠ ∅, 

 DASST→ASST⏐IGN ≠ ∅, DIGN→ASST⏐IGN ≠ ∅, 

 DIGN→IGN⏐THRUST ≠ ∅, DTHRUST→IGN⏐THRUST = ∅, 

 DTHRUST→THRUST⏐FREE ≠ ∅, DFREE→THRUST⏐FREE = ∅, 

 DFREE→FREE⏐IGN ≠ ∅, DIGN→FREE⏐IGN ≠ ∅, 

 DASST→THRUST⏐ASST = ∅, and DTHRUST→THRUST⏐ASST = ∅   [13.4.3] 

Note that some of the operational mode sub-
domains are defined as empty (∅). This signifies that 
there will be no provision for direct transfer from that 
sub-mode to the other intersecting sub-mode. For 
example DTHRUST→IGN⏐THRUST = ∅ is used to signify that 
if the engine is thrusting (i.e. the engine is ‘lit’) then 
there is no purpose in (re)engaging an engine ignition 
mode. 

Obviously the above expressions form only the 
preliminary framework for an implementable system 
design solution. However they can be usefully used to 
set the ‘ground rules’ such that the design can proceed 
logically - and in accordance with the overall 
specification of system requirements. Much further 
work would be required in order that this top-level 
design description could be fully defined - such that 
the specification of requirements for the system 
components could be subsequently produced. 

This ‘case-study’ demonstrates, in particular, the importance of being able to rigorously define (in 
terms of mathematical modelling) the real mode behaviour, together with the mode sub-domain 
conditions under which mode transfers can occur. 
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14.   Summary 
Throughout this paper a particular approach to the identification of functional requirements, and to the 
subsequent design of (compliant) system solutions, has been advanced and recommended - particularly 
with respect to the formal mathematical modelling of ‘complicated’ system behaviours such that the 
satisfaction of the system input/output requirement can be demonstrated. These recommendations can 
be summarised as follows: 

a) Use of a formal method, preferably one based on an established mathematical systems theory, 
to provide the necessary rigor and discipline to the process of systems specification and design. 

b) Emphasis on the completion of a detailed mathematical specification of requirements (and in 
particular the formulation of the IOR) before the search for candidate design solutions is begun. 

c) Ensuring that a comprehensive ‘high-fidelity’ mathematical model of the real-world system 
solution is produced. The development of this model has to be an integral part of the top-level 
design process. The model will need to be sufficiently detailed to be able to reproduce all the 
significant, dynamic behaviours of a real system. 

This paper has tended to concentrate on the practical application of mathematical systems theory, 
rather than a detailed examination/explanation of the theory itself. Detailed descriptions of the 
axiomatic principles behind systems theory are available from the references sources (in particular 
Fertig and Zapata 1977, and Wymore 1993). 

A systems-theoretic approach has therefore been used to develop a set of formal (mathematical) 
‘rules’ which can aid the system designer in the production of compliant, correct, and unambiguous 
system design solutions. These ‘rules’ concern the proper determination of the functional requirements 
of a system, and the design of implementable system solutions (possibly with complicated behaviour 
characteristics) needed to satisfy those requirements. 

The decision to employ systems-theoretic methods within any systems engineering endeavour is 
not some vacuous exercise to give a ‘badge of respectability’ to the work (in terms of comparisons with 
other, specialist, engineering sciences). The reason is much more basic and pragmatic - the use of 
systems theory can help us to consistently, and efficiently, produce good systems design solutions. 

Of course no theory can be totally inclusive or accurate with respect to describing ‘real world’ 
phenomena. It is an aid to the understanding of these phenomena, and (in the context of systems 
theory) it can give us valuable insights into the nature of complex, and complicated, system behaviours. 
Most importantly, systems theory can help us where our ‘common sense’ intuition can lead us to 
incorrect assumptions, and bad design decisions. 

It is, perhaps, unfortunate that much of the current debate on the difficulties of providing for 
successful systems engineering design concentrates exclusively on issues of ‘process management’. 
Relatively little consideration is given (particularly outside of academia) with respect to the 
development of systems-science methods - or to the practical application of these methods to ‘real 
world’ problems. I would argue that it is the use of an established (and practical) systems-science 
methodology - within the context of a sensible and efficient ‘process management’ régime - that is the 
key to the reliable design, development (and effective deployment) of good solutions to difficult 
‘systems’ problems. 
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