
System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

1

System Function Implementation and
Behavioral Modeling - A Systems Theoretic

Approach

Tony Shell

ABSTRACT
Systems theory is now a mature part of the discipline of general systems engineering science, with a
substantial amount of research effort having been undertaken in the last forty years - however there is
still very little evidence of the widespread practical use of systems-theoretic methods within the
engineering industry. This is despite there being strong evidence that many of the current problems in
the delivery of acceptable (or even usable) large, complex, systems solutions result from a failure to
apply a rigorous systems-science approach.

This paper therefore introduces some practical ideas for the effective use of an established
mathematical systems theory to the specification and design of engineered system solutions. In
particular the following areas are explored: the capture of system requirement (and in particular ways of
ensuring a proper and comprehensive specification of input/output requirements); the modelling of
system (complicated) behaviours, including anomalous behaviours arising as a consequence of real
system implementation; and the formal relationship between a comprehensive input/output requirement
specification and the ‘complicated’ behaviours of the candidate system design solutions.

An established theory of systems design, using formal constructs and set-theory notation, is used
throughout this paper as the basis for the presentation of ideas.

[Note: This research paper was first published in ‘Systems Engineering’, The Journal of The International Council on
Systems Engineering, Volume 4, Number 1, 2001, pages 58 to 75, ISSN 1098-1241]

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

2

1. Introduction
Descriptions of the initial phases of a project life-cycle are variously described by a broad range of
systems engineering standards and process models (e.g. EIA 632 1997, sect. 5.3 ‘System Design
Process’). These phases can reasonably be summarised as follows: an initial capture of requirements;
requirements analysis and validation; the identification of the candidate designs; and finally trade-off
studies to select a ‘best’ (optimal) implementable system solution.

It is well documented that even seemingly minor errors and omissions during the critical early
stages of the project life-cycle can result in substantial delays and cost over-runs, frequently to the
extent of undermining the chances of a successful conclusion to a project. Unfortunately, for many
projects, this underlying ‘truth’ is only recognised or acknowledged in hindsight. A notable case in
point was the failure of the inaugural launch of the Ariane 5 rocket, where ‘specification and design
errors in the software of the inertial reference system’ necessitated the further expenditure of some
$320million in management and engineering changes - in addition to the particular losses incurred for
the launcher and payload (CNES/ESA report 1996, and Flight International 1996).

Failures in system specification and design (as demonstrated by Ariane 501) are not unusual for
large, complex systems. These types of failures have particular relevance to the discussions within this
paper - in particular with regard to the problems of the proper capture of input/output requirements, and
of the design modelling of complicated system solutions. This paper therefore specifically explores the
way in which complicated behaviour (i.e. multiple, interrelated system modes of an implementable
system design) can be expressed such that the satisfaction of complex functional requirements (in terms
of the input/output requirements) can be determined in a rigorous, formal manner.

The adoption of an established, and mathematically based, systems theory can provide the
formulae, theorems and proofs required to underpin the systems engineering processes and decisions.
An established systems-theoretic approach (Wymore 1993) is therefore employed extensively
throughout this article to provide a substantiated and formal (mathematical) basis for the development
of ideas.

The content of this paper addresses the following topics with respect to the practical application of a
systems-science methodology:

a) Systems-theoretic principles, and characterisation of system design attributes (sects. 2 to 4).

b) Specification of overall system requirements (sect. 5)

c) Specification of the functional (input/output) system requirements (sects. 6).

d) Satisfaction of the functional (input/output) system requirements by implementable system design
(sect. 7).

e) Specification and verification of design solution conformance with respect to complicated system
behaviour of the implementable system solution (sects. 8 to 10).

The paper concludes with an explanatory listing of the specific (systems theoretic) mathematical
notation (sect. 12), and a worked-example in the form of the preliminary design of a gas-turbine (jet)
engine (sect. 13).

2. Practicable Systems Theory
The practical application of a ‘systems science’, particularly in terms of the use of a rigorously defined
and comprehensive systems theory, is still not widespread within industry. For example, it has been
observed that:

Currently systems science appears to be directed towards problems solving in
organisations but without reference to general problem-solving methods. It operates
mostly in terms of descriptive, rather vaguely defined theoretical constructs and
models which are difficult to relate to observations. As such, it operates at a
metaphysical level, fragmented and remote from well-established branches of
knowledge. [Korn 1997]

This is an unfortunate state of affairs since the adoption of a mathematically-based systems theory
can provide the formulae, theorems and proofs required to underpin the systems engineering processes
and design decisions. In fact the application of a mathematically based systems theory to systems

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

3

design is a well researched and proven approach - the viability of which has already been extensively
reviewed (for example: Klir 1996, Bahill and Dean 1996, Fertig and Zapata 1977).

It is most important that the theory underlying any general systems engineering (formal) method
should be relevant to the problems being addressed. It must be able to adequately represent real
physical phenomena where necessary, and must provide a practical means of deriving implementable
system design solutions.

Of course, it has to be accepted that even the most rigorous, scientifically based engineering
methods will have their limitations. It is extremely difficult, if not impossible, to comprehensively
codify any scientific method - however that does not prevent us from developing and applying certain
practical rules, built on logical argument, and tested by observation, experiment and experience.

Unfortunately many of the theoretical methods being actively promoted as ‘systems engineering’
formal methods are, in fact, closely associated with particular technologies (in terms of modelling
paradigms and notation), or have limited scope (and, especially, with little or no reference to design
optimisation), or are particularly concerned with specific implementable system design techniques (for
example, for computer-based systems solutions). It would appear that these concerns are shared by
Prof. Joseph Goguen who says in respect to general systems theory (GST) that:

But it was (and still is) disappointing to me that so few people felt any need for
concepts and theories of such generality; they seem happy to have (more or less)
precise ideas about specific systems or small class of systems, with little concern for
what concepts like system, behaviour and interconnection might actually mean
[Calude 1998, page 98]

It is therefore for these reasons, in particular, that this paper advocates the development and use of
a general systems methodology - built upon basic axiomatic rules of mathematical systems theory. This
should, as Professor Goguen puts it, address such modelling concepts as:

.... system, behaviour, and interconnection, formalized in such a way as to include
hierarchical whole/part relationships. [Calude 1998, page 98]

Therefore an established systems theoretic approach (i.e. Wymore 1993) is employed extensively
throughout this paper so as to provide a substantiated and formal (mathematical) basis for (and in
particular) the development of ideas concerning complicated system behaviours.

However, this paper is not intended to be a detailed exposition of systems theory - its primary
purpose is to describe how an effective systems theoretic approach can be practicably applied to
provide practical solutions to ‘real-world’ problems. The systems-theoretic mathematical formulations,
their derivations, and the relevant theorems and proofs are available within the referenced systems
engineering text (Wymore 1993).

3. Formal Method
3.1 System Definitions and Specifications. The notion of system definition and system specification
are concepts that are fundamental to the proper understanding and correct application of a systems-
theoretic system design method. It is therefore worthwhile to revue their meanings, and proper useage.

The term ‘definition’ refers to providing a description of meaning (formal or informal) to some
statement. The term ‘specification’ refers to the detailed description of a particular thing or instance.
These literal meanings are therefore required to be reflected in the use of any mathematical expressions
used within a ‘formal’ context. For example a system is defined (in the context of the systems-theoretic
method used throughout this paper) as the quintuple:

 Z = (SZ, IZ, OZ, NZ, RZ) [3.1.1]

- where this discrete form of a system model is defined in terms of sets SZ, IZ, and OZ for the system
states, inputs, and outputs respectively - and the functions NZ and RZ for the next-state and read-out
functions. This mathematical construct is clearly a definition - a generic ‘system’ description.
Importantly, it also provides a definitive ‘template’ for specifications of particular system design
solutions.

These types of formal (mathematical) definitions can, in the context of systems engineering theory,
be employed to describe the ‘meaning’ of a wide range of theoretical constructs, including requirement

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

4

specifications, systems (as above), system resultants (of complex designs), system modes of behaviour,
design implementation, optimal system solutions - and so on.

A systems engineering specification, therefore, will be a particular example (instance) of a
systems-theoretic construct, with its elements given specific sets of attributes, and specific functional
relationships, expressed according to the (mathematical) rules of the appropriate, and particular,
definition for that construct.

3.2 Semantics and Syntax. System design requires an ability for the imaginative creation of mental
models of systems engineering constructs. These ‘imagined’ solutions are required to provide
sufficiently accurate representations of the real-world phenomena (for example, the system behaviours)
and be formally recorded (i.e. using mathematical, grammar, graphical rule, etc.) in a widely
understood, communicable language, that provides appropriate contextual meaning (semantics), within
an established set of rules (syntax).

It is therefore widely accepted that ‘formal method’ refers to any specification and design method
that incorporates a logically consistent set of rules - for example we have from the following definition
provided by J. P. Calvez:

 Formal Models: A system may be specified by a set of statements expressed in a
formal language (grammar rule, algebra rule, etc.). [Calvez 1993, pp. 160]

Indeed it could be conceivably argued that (for example) engineering drawings are a type of formal
method of design specification - with the graphical constructs prescribed by certain rules, and given
precise contextual meaning.

However, the interest here is obviously in terms of a mathematical formal method with, in this
case, the mathematical statements prescribed by fundamental (axiomatic) rules, and given precise
meaning - in terms of the systems-theoretic definitions.

3.3 Proof of Correctness. Systems engineering is an engineering science (a ‘formal method’ for
engineering design) and as such there is a need for the particular design artefacts to be proved to have
been properly derived and specified. There is, of course, nothing new here - it is a long-accepted part of
the practice of recording ‘design rationale’ (of keeping, for example, engineering log books for the
duration of a system’s development and operational life). It is therefore by such means that the
references, assumptions, mathematical derivations, and particular proofs (of correctness) can be
formally recorded.

It is proposed that the proper venues for confirming that ‘proof of correctness’ has been established are
the system design reviews and design audits routinely carried out at various stages of the design
process. It is unfortunate that too often these reviews and audits can turn out to be little more that a
check that the design task follows some predetermined plan (or ‘procedure’). Indeed there is a real
danger that design reviews can often involve little more than the ‘ticking off’ of completed tasks, with
little proper regard for providing a system design ‘proof of correctness’.

4. System Complexity and Complication
There are two particular properties of ‘real world’ systems that often cause system designers significant
problems. These can be broadly categorised as system complexity and system complication. An
overview of these concepts, in systems-theoretic terms, is given below.

4.1 Systems-theoretic System Complexity. It is proposed that a ‘measure’ of system complexity can
be formally expressed in terms of a component count (Shell, 1999). Although this might at first seem to
be a rather ‘un-scientific’ proposition it is, in fact, an entirely apposite and mathematically rigorous
(systems-theoretic) definition. However care must be taken not to misinterpret this description - this is
not simply a tally of the number of physical parts of a system. The ‘components’ are, in themselves,
formally identifiable as individual (non-trivial) systems, with their own behavioural characteristics. In
terms of the given systems-theoretic modelling paradigm - ‘system components are component
systems’.

complexity ⇒ many components ⇒ mode (behaviour) hologenicity

It is in this context that the concept of complexity in terms of the interactions of the behavioural
modes of the components, such that an overall system mode of behaviour is exhibited, is formally
introduced (i.e. system mode hologenicity).

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

5

It is not intended to include the issues of design complexity within this paper. Although it forms an
essential part of the systems-theoretic systems design process, it has already been comprehensively
addressed elsewhere (for example, see Wymore 1993, chapters. 3 and 5). Systems complexity is not
specifically relevant to the subject matter of this paper.

4.2 Systems-theoretic System Complication. A complicated system is defined as an implementable
system solution that, at a particular level of abstraction, is perceived to exhibit many different modes of
behaviour. The concept of system complication can be formally captured in terms of the number of
modes of the system that have to be expressed in order to comprehensively describe the system’s
functional behaviour.

complication ⇒ many (behaviour) modes ⇒ many mode interactions

For the purpose of this study, a complicated system is therefore defined as a system whose overall
functionality is best described in terms of multiple modes of operation, each of which exhibits a
different, and distinct, pattern of behaviour.

For complicated systems the principal concern is of ensuring reachability and sustainability of the
required (multiple) system modes - such that the functional behaviour of the implemented system can
provide complete (or at least more extensive) satisfaction of the functional system design, and hence of
the input/output requirements.

It is the problems that arise in the design and implementation of complicated systems that is
specifically addressed within later sections of this paper.

5. System Requirements
5.1 Requirements Specification. In terms of the systems-theoretic method used throughout this paper
(i.e. Wymore 1993), the overall system requirement is defined in the form of a sextuple:

 SDR = (IOR, TYR, PR, CR, TR, STR) [5.1.1]

- where IOR is an input/output requirement, TYR a technology requirement, PR a performance
requirement, CR a cost requirement, TR a trade-off requirement, and STR a system test requirement.

Therefore, specifying a particular input/output requirement involves using the IOR formulation to
describe, for every possible (identifiable) system input trajectory, a set of eligible output trajectories.

A technology requirement will be specified in terms of a particular set of (complex) system models
that describe the technological solutions that are mandated (or, as is more usual, prohibited) in terms of
acceptable component choices and design architectures (the TYR). The system designer is therefore
constrained to use specific component designs in order to build a resultant system solution.

The performance, cost, and trade-off requirements (PR, CR and TR respectively) are all defined in
terms of comparative orders over a set of candidate system solutions, such that preference between any
two systems can be expressed. These requirements are therefore generally specified using real-valued
functions of the performance and cost figures of merit, determined for the particular candidate set of
implementable system solutions.

The system test requirement (STR) is used to specify the tests to be conducted so as to
demonstrate design conformance, and real implemented system compliance, to the requirement
specification. The extent (coverage) of testing and the test procedures will, of course, be agreed
between the various system stakeholders (notably the system operators). It is also noted that in the
referenced methodology (Wymore 93) that the need for testing is incorporated into the processes of the
development of the candidate designs, and to the identification of the optimal system solution.

The process of identifying acceptable candidate system design solutions will therefore be formally
defined in terms of the identification of those ‘buildable’ system designs that can satisfy the technology
requirement - and that can exhibit a mode of behaviour consistent with an elaboration of some
functional system design, such that the input/output requirement is satisfied (see section 7).

5.2 Requirements Validation. The specification of requirements and the specification of the
compliant system solutions are obviously inextricably linked. All system design possibilities will be
directly determined by a detailed specification of requirements - and the requirements will themselves
be validated by the identification of at least one implementable system solution. Every effort should
therefore be made to complete a detailed, and validated, description of the system-level requirements.

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

6

The validation of requirements is more than ensuring the (provably) correct derivation and
specification of requirements in terms of some formal language. The danger of relying solely on the
(verifiably) correct use of formal method is that the requirements can merely become a ‘wish-list’ -
albeit expressed in a rigorously precise and consistent (formal) way. We need to be sure that the
requirements are specifying something that is functionally achievable, and which is technologically
buildable (that does not contravene accepted laws of physics, for example).

For example, in a recent paper that explores the process of systems engineering we have the
following description of ‘requirement validation’:

Validating requirements means that the set of requirements is consistent, that a real-
world solution can be built that satisfies the requirements, and that it can be proven
that such a system satisfies its requirements. If Systems Engineering discovers that
the customer has requested a perpetual-motion machine, the project should be
stopped. [Bahill, Dean 1996]

Of course it should be obvious that to validate the requirements involves identifying a feasible
system solution. That is fundamentally what this activity is all about - to show (in formal terms) that
the implementability space (as specified by the input/output and technology requirements) is not
empty. It is also the case that (subsequently) the candidate system design solutions will also have to be
shown to be feasible system solutions with respect to these same (validated) requirements criteria.

We must take care not to confuse the attribution of ‘feasibility’ with the activities of ‘requirements
validation’ and of ‘system designs identification’ (for example: EIA 632-1, 1997 sect. 5.3.1.2. ‘Define
and Validate System Technical Requirements’, and subsequently EIA 632-1, sect. 5.3.2. ‘Design
Definition Activity ... determine potential solution alternatives’). Both of these activities are concerned
with identifying feasible system solutions (which may, or may not, already exist).

It should be noted that we need only to identify one feasible solution to validate the requirements,
and also that that solution may already (physically) exist. However it might not be a viable candidate
solution - for other than engineering reasons (i.e. legal, ethical, business, etc.).

6. The Satisfaction Of Input/Output Requirement
6.1 Input/output Scope. A major difficulty faced by a system designer is that of ensuring that the
input/output requirements adequately describe the ‘real’ problem - in terms of capturing the input
trajectories that the system will be responsive to, and specifying the resultant output trajectories that the
system is allowed to produce. It is this problem (and in particular the inclusion of the system
behaviours that result from ‘non-operational’ or ‘anomalous’ input trajectories) that is specifically
addressed by this paper.

To attempt to limit (or ignore) the true scope of the input/output specification courts disaster. For
example, we have the following statement within the Ariane 501 Inquiry Board report which (it is
suggested) is very pertinent to the arguments contained above:

The specification of the inertial reference system and the tests performed at
equipment level did not specifically include the Ariane 5 [flight] trajectory data.
Consequently the realignment function was not tested under simulated flight
conditions, and the design error was not discovered. [CNES/ESA 1996, sect 3.1.r]

Systems theory (e.g. Wymore 1993, chapter 6) provides for a mathematically rigorous approach to
the specification of an input/output requirement (IOR). In essence this involves the use of an
‘eligibility’ function (ER) such that for every identified system input trajectory (i.e. f ∈ ITR where ITR
= FNS(TSR,IR)) a set of eligible output trajectories can be expressed (i.e. ER(f), where ER(f) ⊆
OTR is a sub-set of the output trajectories, and OTR ⊆ FNS(TSR,OR)). A rigorous, comprehensive
and detailed functional specification is therefore possible using the mathematical elements of the
input/output requirement (IOR).

As will be seen later (section 7) it is the system designer’s task to identify functional system designs
(FSD) which, if presented with an input trajectory f (where f ∈ ITR) will respond with an ‘eligible’
output trajectory g (where g ∈ ER(f)).

An important advantage of using a formal (mathematical) approach to the definition of the
input/output requirements (IOR) is that the method does not impose any limitations with respect to the
size of the problem (as is often the case with textual or graphic-based formal methods). The proper use

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

7

of mathematical systems theory will also ensure that the expression of the input/output requirements
can be rigorously, comprehensively and concisely specified.

For example, given that an input trajectory ITR is defined as a subset not empty of FNS(TSR, IR)
- where TSR = IJS[0, OLR), the life-cycle operation phase is OLR ∈ IJS+ ∪ {∞} and where IR is the
set of inputs of the IOR, then the following (simple) example provides a specification of a complete set
of input trajectories - in this case, as constant inputs with values over the range of real numbers of 0.0
to 10.0.

 IR = RLS[0.0,10.0] and OLR = ∞

 ITR = {f : f ∈ FNS(TSR,IR), there exists p ∈ RLS[0.0,10.0] such that f = CNS(TSR,p)}

Incidentally, it should be noted that in this example an infinite number of input trajectories are
specified, i.e. such that #(ITR) = ∞

It is important that the IOR should include the required (or permitted) responses of the system to
all identified inputs. This includes ‘anomalous’ input trajectories that are not desired or expected ‘user’
input demands, but which are physically feasible (such as those arising from fault or failure conditions
of other, externally-connected, systems).

System designers, who attempt to determine a set of possible candidate systems designs on the
basis of an incomplete or insufficiently detailed definition of the IOR, should therefore accept the risk
that they may encounter significant (perhaps insurmountable) difficulties - for reasons that are
summarised below.

6.1 Maintenance Of System Candidature. What happens if it is decided to reduce the range of
permitted system outputs, after a set of (previously acceptable) candidate designs have been
determined?

A deletion from the sets of eligible output trajectories (i.e. to produce a proper subset of ER(f))
may mean that a previously acceptable set of candidate functional designs (FSDs) may no longer apply
- one (or more) system solutions may not now be allowed. To ensure that the full (original) set of
possible FSDs is retained may necessitate the deletion of the corresponding input trajectory, or
trajectories, from the previously accepted requirement specification (i.e. f ∈ ITR). The alternative
might have to be to accept a reduced set of candidate designs.

This conclusion is consequential upon the formal definitions for IOR sub-requirements and super-
requirements (Wymore 1993, sects. 6.50, 6.51).

6.2 Extensions Of The IOR. What are the possible consequences if it is decided to make (later)
additions to the input/output requirement? How does this effect the current candidate designs?

Because of the inclusive nature of the IOR, no new FSDs should become eligible since they would
already be candidate FSDs for the original IOR. This is very important since the inference is that as the
IOR definition is made more ‘complete’, then the number of potential candidate FSDs will decrease
(or may possibly remain the same) - but should definitely not increase in number. Therefore, any
addition to the IOR set of input trajectories, together with the corresponding (eligible) output
trajectories, may disqualify some of the original FSDs.

For example, it could be argued that decisions made on code re-use for Ariane 5 (or, more
particularly, on the retention of redundant code and the lack of comprehensive design rationale) was a
major contributory factor in the system failure. In particular the Inquiry Board report states that:

The same requirement [for continued IRS gyro-compass alignment calculations after
lift-off] does not apply to Ariane 5, which has a different preparation sequence and it
was maintained for commonality reasons, presumably based on the view that, unless
proven necessary, it was not wise to make changes in software which worked well on
Ariane 4. [CNES/ESA 1996, sect 2.2, para. 10]

Therefore, in the case of Ariane 5 we have a functional system design that was presumably compliant
on the basis of an original IOR specification (for Ariane 4) but which was not an acceptable system
solution for an IOR extended to encompass the Ariane 5 flight envelope.

6.3 IOR Elaboration. It is not uncommon for initial design studies to be undertaken on the basis of a
simplified (un-elaborated) set of input/output requirements. The IOR is correctly ‘scoped’ in terms of

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

8

the number of input and output ports, their general content, and the relationships between input
trajectories and corresponding (eligible) output trajectories. For example, we may begin with an
original input set of the form:

IRoriginal = {low power, op power, excess power} where #(IRoriginal) = 3

However, the IOR is then subsequently elaborated during the course of further systems analysis work.
For example, the above input may be elaborated into the form:

IRelaborated = RLS[0.0,16.0) ∪ RLS[16.0, 32.0) ∪ RLS[32.0, 50.0) such that #(IRelaborated) = ∞

- where this input homomorphism (i.e. IRoriginal = HI(IRelaborated)) would be reflected in a
corresponding change to the eligibility function (ER), so as to maintain the input/output relationships.
The output set OR could also, of course, be subject to elaboration. What, then, are the possible
consequences of this elaboration of the input/output requirements?

Consider first the case where no functional system designs (FSDs) can be identified so as to satisfy
the original IOR. The consequences of a later elaboration of the IOR (consistently undertaken such that
IORoriginal = HIMIO(IORelaborated, HI, HO)) may be that viable functional system designs are (now)
found to be possible. The danger is, of course, that without the necessary IOR elaboration, work may
be prematurely abandoned on the false premise that no system solution is possible.

Consider, also, the alternative scenario where functional system designs (FSDs) are identified that
satisfy the IOR. In this case the consequences of a later elaboration of the original IOR may be that no
viable functional system designs are (now) possible. The danger is therefore that much nugatory work
might be undertaken before it is realised that no viable system solutions are, in fact, possible (at least
with respect to the requirements as defined).

These observations on the possible consequences of IOR ‘elaboration’ are based on, and consistent
with, ideas developed within the referenced systems theory (e.g. Wymore 1993, sects. 6.71 to 6.77).

6.4 IOR ‘Completeness’. Is it possible to be sure that the input/output requirement is ‘complete’?

Although it is entirely possible to prove that any given input/output requirement is completely
specified, it is not possible to prove that the ‘complete’ input/output requirement has been captured (i.e.
to prove that ‘the thing is being done right’, but not that ‘the right thing is being done’). There is no
practical way of testing for requirements ‘completeness’:

We know of no objective criteria for determining the completeness of requirements.
[Garcia, Laplue, Rhodes 1995, p 402, “Determining Requirements Completeness”]

We cannot know that the requirement is incomplete, without knowing what the complete
requirement is. Unfortunately a part of the requirement can be omitted (from the SDR) without
affecting the consistency, correctness or validity of the remaining requirement specification.

However this is not an argument for a laissez-faire approach to requirement capture - every effort
should be made to complete a detailed description of the ‘system-level’ input/output requirements
before any design process is begun (for the reasons given above).

Unfortunately it is common practice to engender an expectation that the system requirements are
very likely to be incomplete at the start of the design process. For example: an ‘eighty per cent rule’ is
increasingly being used as the requirements-capture criteria for commencement of each next design
iteration. Indeed it is often planned that the customer’s requirements will be ‘firmed up’ as the
preliminary designs and prototypes are developed and demonstrated.

It is the author’s considered opinion that this use of prototyping (and simulation/emulation) to elicit
requirements is an unsound and unsafe approach to requirements capture. The tendency is that the
‘problem’ then becomes one of making the prototype acceptable to the customer instead of
concentrating on the identification of the true (technology-independent) customer requirement -
including the essential input/output requirement. To quote from Alan Cooper:

You can get a better design with pencil and paper and a good methodology than you
can with any amount of prototyping. [Cooper 1999, pp. 56]

However prototyping can certainly have an important part to play in the system design process -
particularly in terms of requirements validation, design model verification, and in the comparative
assessment (trade-off studies) of the candidate system solutions.

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

9

7. The Identification Of Implementable System Designs
The principal objective here is to develop an implementable system design (ISD) in the form of a
mathematical description of a technological solution that satisfies a functional requirement (as
prescribed by an input/output requirement, IOR).

The technology requirement (TYR) is used to specify the technologies that are mandated (or, as is
more usual, prohibited) in terms of acceptable component choices and design architectures. The system
designer is therefore constrained to use a sub-set of available component designs to build the resultant
system solution.

Obviously there may be more than one (possibly many) implementable system design solutions
that satisfy both the input/output requirement and the technology requirement. These candidate system
solutions will be subject to trade-off studies using the performance (PR), cost (CR) and trade-off
requirements (TR) so as to determine the ‘best’ (or an optimal) system solution.

An acceptable and implementable system design (ISD), built using the permitted (and possibly
mandated) technology (TYR), therefore has to be able to exhibit a mode of behaviour that provides for
a functional system design (FSD) solution that will satisfy the IOR, as illustrated in figure 1.

In system theoretic terms a system (e.g. ZF) is implemented by any buildable system design (e.g. a
system ZI that satisfies the technology requirement TYR) which is capable of exhibiting a mode of
behaviour (Zin) such that the implemented system (ZF) is a homomorphic image of the exhibited
system mode. It should be noted that a homomorphic image of a system is a system that exhibits the
same functional capability as that system - in this case defining the functional equivalence between Zin
and ZF. A formal description of system implementation is available within the referenced text (i.e.
Wymore 1993, sections 5.69 to 5.75)

For the exhibited function (ZF) to be able to satisfy the input/output requirement it will be
necessary to also specify a start condition (system state DSZ) and a time-scale for the function duration
(TSZ). Therefore, if ZI can effectively express a functional system design (FSD) that satisfies the
input/output requirement, where FSD = (ZF,DSZF,TSZ), ZF is the implemented system function, DSZ
is the initial state and TSZ is the system time-scale of satisfaction - then ZI provides for an
implementable design solution that satisfies both the input/output (IOR) and the technology
requirement (TYR).

[Note that in the referenced systems theoretic method the ZF, ZI and ZIn system models are all
expressed in the form of discrete system models - see section 3.1]

The initial (i.e. ‘start-up’) conditions for the functional design solution are defined as the state
DSZF, where DSZF ∈ SZF. In terms of the initial conditions for the implementable system solution
(ISD) provided by ZI , the initial conditions will be a set of states given by the homomorphic
relationship:

 SI ⊆ SZIn, where HS(SI) = DSZF [7.0.1]

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

10

It is required that the sets of inputs and outputs defined for the IOR and the FSD are identical to
ensure proper conformance to the functional requirements. This will therefore necessitate the
homomorphic mapping between ZI and ZF being of a form defined by:

 HI(IZI) = IZF , and IZF = ID(IR),

 HO(OZI) = OZF , and OZF = ID(OR). [7.0.2]

The implications of the above assertions is that the designer must endeavour to ensure that the
proposed real (implementable) system solution is capable of exhibiting behaviour that completely
satisfies the functional requirement of the IOR (i.e. over the whole of the input/output operational time-
scale). Ways of addressing this problem are explored in the remainder of this paper.

8. Invoking System Function
The following mathematical developments are directly concerned with the expression of ‘complicated’
behaviours of an implementable system design - and of describing how these behaviours can be shown
to satisfy the input/output requirement.

The required system function (i.e. the FSD) is provided by means of an exhibited mode of
behaviour of the implementable system design (ISD). However this mode of behaviour does not
necessarily encompass all possible behaviours of the ISD - there may be other ‘non-operational’
behaviours that are different, and distinct, from those required to satisfy the particular IOR. These are
introduced as a necessary consequence of the technology of the implementable system design (for
example ‘diagnostic test’ or ‘calibrate’) - or they may be necessary such that the implementable system
has the capability of providing other, alternative, functionality (i.e. to serve some ‘other purpose’).
Additional ‘anomalous’ modes of behaviour, that are manifest as a result of the physical limitations of
the system design (including fault or failure modes), may also be exhibited by the implemented system.

It is therefore important that the possibility of transference between the required FSD mode and
these other behavioural modes (i.e. the ‘reachability’ of one mode from another) is adequately
modelled.

The systems theoretic approach can be used to express the system behaviour mode ZIn - and this
can include the conditions required to both sustain the mode, and for the ZIn mode to be reachable. This
is developed using the parameterized form of system mode such that: ZIn = SYSMO(ZI,SMBFIn,OZIn),
given the system mode behaviour function SMBFIn ∈ FNS(SZIn × IZIn, ITZI × TZ+

I), and where SZIn
⊆ SZI, IZIn ⊆ IZI, OZIn ⊆ OZI, NZIn ⊆ NZI, and RZIn ⊆ RZI .

The design task is, in effect, to specify the ZIn mode states, inputs, outputs, and (most importantly)
the system mode behaviour function. The SMBF maps elements of the Cartesian product of mode state
and input values (i.e. (x,p) ∈ SZIn × IZIn) to corresponding elements of system input trajectory and
time-index values (i.e. (f,t) ∈ ITZI × TZ+

I) that are required to sustain that mode. The SMBF function
will be specified either by an explicit set of functional pairings or (as would be more usual) by a
generic mathematical expression of the required SMBF functional mapping.

8.1 Direct Mode Transfer. The manner in which access to the required behavioural mode (e.g. ZIn) is
achieved, and the conditions necessary to sustain the mode, are expressed through the identification of
particular mode sub-domains. This process is described in formal terms by the development of the
following expressions.

If an implementable system design (e.g. ZI) exhibits a required mode (i.e. ZIn), together with some
other modes (e.g. ZIm) such that:

 ZIn = SYSMO(ZI,SMBFIn,OZIn), and ZIm = SYSMO(ZI,SMBFIm,OZIm), where

 SZn|m = SZIn ∩ SZIm, and SZn|m ≠ ∅ [8.1.1]

- then this defines all inter-mode transfer states between the two modes. [Note that if there exists a
‘mode of a mode’, e.g. ZIm = SYSMO(Z1In,SMBFIm,OZIm), then by definition SZn|m = SZIn ∩ SZIm
and SZn|m ≠ ∅ must follow since SZIm ⊆ SZIn.]

If the sets of system states for two modes are disjoint (SZn|m = ∅) then direct transfer between the
modes is not possible - however indirect transfer may occur via some other (intermediary) system
modes.

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

11

8.2 Mode Transfer Reachability. An important design task is to specify the conditions under which
inter-mode states are reachable from other parts of the mode domain (if at all). These conditions will be
realised as a result of inputs to the system (including, possibly, ‘null’ inputs) in combination with the
current mode states. Given that two system modes are as described above, the mode sub-domain
conditions Dn→n|m for entry to the inter-mode states can be defined as follows:

 Let Sn→n ⊆ (SZIn - SZn|m), and Dn→n = Sn→n × IZIn, such that

 for every (x,p) ∈ Dn→n, if y = NZIn(x,p), and y ∈ Sn→n ,

 then Dn→n|m = ((SZIn - SZn|m) × IZIn) - Dn→n then

 Sn→n|m = {y: for every y = NZIn(x,p), where (x,p) ∈ Dn→n|m, and y ∈ Szn|m} [8.2.1]

- where Sn→n|m are the accessed inter-mode states on transfer out of ZIn to ZIm.

Similarly, the mode sub-domain conditions for re-entry from the inter-mode states are defined as
follows:

 Let Sn|m→n|m ⊆ SZn|m, and Dn|m→n|m = Sn|m→n|m × IZIn, such that

 for every (x,p) ∈ Dn|m→n|m, if y = NZIn(x,p), and y ∈ Sn|m→n|m

 then Dn|m→n = (SZn|m × IZIn) - Dn|m→n|m

 Sn|m→n = {y: for every y = NZIn(x,p), where (x,p) ∈ Dn|m→n, and y ∈ (SZIn - Szn|m)}
 [8.2.2]

- where Sn|m→n are the accessed states on transfer back into mode ZIn.

The Venn diagram in figure 2 is a simple example of a dual-mode system that illustrates the system
design constructs described above. It is used to show the state-space relationships between two system
modes. For the purposes of clarity, only mode ZIn behaviour conditions are shown - the transfer
conditions for mode ZIm could be developed and shown in exactly the same way.

From the above expressions it is seen that since, by definition:

 Sn→n ⊆ (SZIn - Szn|m) and Sn|m→n|m ⊆ SZn|m

 then it must be the case that

 Sn→n ∩ SZn|m = ∅ and

 Sn|m→n|m ∩ (SZIn - SZn|m) = ∅ [8.2.3]

8.3 Isolating Mode Sub-domains. An isolating mode sub-domain is identified when the condition
Dn→n ≠ ∅ is satisfied (and hence, by definition, Sn→n ≠ ∅).

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

12

A good example of an isolating mode sub-domain might be found in a system’s ‘power-up self-test’
mode. A detected critical failure would result in the system being prevented from entering an
‘operational’ mode, regardless of the (operational command) inputs to the system. The system would
have to be subject to (perhaps) ‘diagnostic test’, and/or decommissioned for repair.

8.4 Inevitable Mode Transfers. It may be decided, however, to go further and specify that it would be
undesirable to have any possibility of a ‘sustained’ system mode - in other words, to ensure that Sn→n =
∅ for any sub-set of IZIn . How could this be specified? One way would be to broaden the definition for
Dn→n through an extension of equation [8.2.1] such that:

 IZIn ⊆ IZI

 Sn→n ⊆ (SZIn - SZn⏐m) then, for any

 Dn→n = Sn→n × I’, where I’ ⊆ IZIn then

 for every (x,p) ∈ Dn→n, then y = NZIn(x,p), and y ∈ Sn→n [8.4.1]

Then, in the particular instance where Dn→n = ∅ (and hence Sn→n = ∅) there can be no sub-domain
of mode ZIn which can be sustained - regardless of the mode input trajectory. The mode behaviour will
be such that it will inevitably transfer to the inter-mode states SZn⏐m.

An inevitable mode transfer may be stipulated where mode transfer is deemed to be mandatory. For
example, an ‘over-speed’ mode of behaviour for an aircraft jet engine would be considered to be
extremely hazardous (most certainly a ‘worst-case scenario’).

The system designers may therefore stipulate an inevitable mode transfer to a safe ‘normal operating’
mode - which would therefore occur regardless of any further demanded inputs to the engine (see, for
example, equation [13.3.3].).

8.5 Other Transfer Possibilities. However it is interesting to note the possibility of the relationship:
(Sn→n ∩ Sn|m→n) ≠ ∅, i.e. an ‘isolated’ mode sub-domain could be directly reachable from the mode
transfer states (as shown in figure 2) - immediately inhibiting further mode transfers from ZIn to ZIm.

Note also that it is possible for Dn→n|m = ∅ which would specify that transfer out from mode ZIn to ZIm
is only possible from the intersecting states SZn|m. It is also possible for Dn|m→n = ∅ such that once that
transfer states SZn|m are entered, then the ZIn mode will remain within those states regardless of the
subsequent mode ZIn inputs (unless, of course, mode ZIm - or some other intersecting mode is engaged).

9. Function Initiation.
The question remains of how to specify access to the mode ‘initiation’ states SI (i.e. those states SI
defined by: HS(SI) = DSZF, and FSD = (ZF,DSZF,TSZ), and where FSD satisfies the IOR as
defined previously). In other words, how are the ‘initiation’ states SI to be reachable from regions of
the mode domain of ZIn ?

In fact, the same form of mathematical expressions as those developed above to define transfer
possibilities between modes can be used:

Let S’ ⊆ (SZIn - SI), and DS’ → S’ = S’ × IZIn, such that

for every (x,p) ∈ D’, then y = NZIn(x,p), and y ∈ S’,

then DS’ → SI = ((SZIn - SI) × IZIn) - DS’ → S’ then

SS’ → SI = {y: for every y = NZIn(x,p), where (x,p) ∈ DS’ → SI, and y ∈ SI} [9.0.1]

- where SS’ → SI defines the immediately accessed ‘initiation’ states of SI.

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

13

Note that it is not necessarily required that SI can be reached only from within ZIn - it may be
sufficient that the states SI are accessible by direct transfer from some other mode of ZI. Both scenarios
are illustrated in figure 3, below.

10. Functional Partitioning
It is often an expedient design strategy to partition the functional design into ‘function sub-domains’.
The partitioning will usually reflect the operational requirements of the system user, as well as
(perhaps) the physical characteristics of the implementable system solution.

However, it should be noted that this concept of ‘functional partitioning’ is entirely distinct from
‘functional decomposition’ - which is a consequence of design implementation (i.e. design complexity).
The issues concerning system complexity, and of ‘functional decomposition’, are outside of the scope
of this paper.

As with the initial identification of the operational mode ZIn to provide satisfaction of the IOR, the
partitioning of this implementation mode ZIn can be used to express both operational requirements,
together with the various physical behaviours of the real, implementable system solution.

10.1 Mode Sub-domains. It is proposed that the implementation of functional partitioning is
represented in terms of mode sub-domains of the ISD mode such that, if ZIn is developed to represent
the required overall mode of behaviour of the implementable system (as defined previously), then a
mode ZIn’ can (by definition) be defined as follows:

ZIn’ = SYSMO(ZIn,SMBFIn’,OZIn’), i.e. the parameterized system sub-mode, where

SMBFIn’ ∈ FNS(D’, ITZI × TZI), such that

SMBFIn’ ⊂ SMBFIn, where D’ ⊂ (SZIn × IZIn) [10.1.1]

This sub-mode will, together with the specified (and unmodified) homomorphic relationship,
provide for an implementation of the sub-function ZF’ - such that ZF’ is implemented by ZI with respect
to the system mode ZIn’ and the homomorphic mappings HS, HI and HO. [Note, therefore, that the
overall system mode behaviour function (SMBFIn) and the homomorphic mapping (HS,HI,HO) remain
unchanged. The only change required to express the partitioned behaviour of ZIn’ is in the specification
of D’, the sub-domain of the mode ZIn.]

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

14

10.2 Sub-domain Reachability. Obviously the concept of ‘reachability’ can also be applied to the
mode ‘sub-domains’. The example illustrated in figure 4 shows the interaction of three sub-domains of
a mode ZIn - i.e. for modes ZIn’, ZIn’’, and ZIn’’’. This example gives a graphic representation of the
different conditions where transfer between the sub-modes may be possible, given the operating
conditions.

In the example illustrated in figure 4 the initial state space SI is shown as being directly accessible
from either sub-mode ZIn’ or ZIn’’ since (in this case) SI ⊂ (SZIn’ ∪ SZIn’’).

[It should be noted that the use of these mode transfer diagrams are for illustrative purposes only -
they are not an acceptable substitute for the full mathematical definitions.]

11. Functional Design Verification
Previous sections of this paper have investigated methods of providing a comprehensive specification
of the input/output requirements, and for specifying functional behaviour for candidate system designs
- such that the input/output requirement can be satisfied.

In particular these required system behaviours have been characterised in terms of modes, and mode
interactions, of the implementable system solutions. In general terms these broad-based attributes of
system behaviour are modelled as follows:

a) System function - as an exhibited mode of the implementable system solution.

b) Mode reachability.

c) Isolated mode behaviours.

d) Inevitable mode transfers.

e) Sub-modes (functional partitioning).

The modelling of these system behaviours therefore provides for the specification of general ‘design
rules’ with respect to the (complicated) functionality of the implementable system solution.

It will be incumbent on the designers of the real, implementable system solution (and the system
component designers) to provide proof that their implemented systems will actually exhibit the
anticipated (and required) behavioural characteristics - prior to any commitment to manufacture.

This conformation of ‘design correctness’ will be by means of theoretical analysis and/or by design
model experimentation (system simulation/emulation) or by prototype demonstrations.

For example, it may be possible to establish a substantial part of the fundamental behavioural
characteristics of a candidate system design by theoretical analysis. Consider the case where the
candidate system is implemented as a continuous system, and the design mode can be adequately
modelled in terms of a linear, time-invariant system. The conventional control techniques of state-space

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

15

analysis can therefore be usefully used to examine the system mode behavioural characteristics of the
system. The system mode is therefore modelled in the standard MIMO form as follows:
and where A is the system matrix, B is the distribution matrix, C is the output matrix, x is the
state vector, y is the output vector and u is the input vector.

For the attribute of ‘controllability’ to be satisfied, where ‘controllability’ is defined in terms of the
ability to use system mode input trajectories to cause the system to ‘migrate’ from any arbitrary mode
state to any other mode state, via some controlled state trajectory (see, for example Richards 1979, sect.
7.2) then, for complete controllability, the following design conditions need to be satisfied:

 [B : AB : : An-1 B] must be of rank n, where n = #(x).
A similar analytical procedure may be used to demonstrate complete system controllability for a
‘digitally controlled’ continuous system implementation (see, for example: Franklin and Powell 1980,
sect 6.7), or for a purely ‘digital/discrete’ system implementation (see, for example: Szidarovszky and
Bahill 1992, sect. 5.2).

[Note that the above analysis is in terms of mathematical modelling of the real, implementable design
solutions. This is independent from the decision of using discrete modelling for the chosen systems-
theoretic method (see section 3.1) which is a consequence of the need to provide for unique
mathematical solutions to certain systems-theoretic constructs, and is applicable regardless of the
eventual form of system implementation - i.e. continuous, digital, or hybrid.]

If a system satisfies this criteria for ‘complete controllability’ then (by definition) it must be the case
that all system mode states are reachable (i.e. Dn→n = ∅) - there cannot be any ‘isolating’ mode
domains (as defined in sections 8.2, 8.3).

Similarly, since the condition of complete controllability is satisfied, then it must be possible to force a
return to a previously exhibited system mode state - therefore a ‘controllable’ system mode cannot
exhibit ‘inevitable’ mode transition (as defined in section 8.4).

It should also be noted that, according to the ‘controllability’ criteria, that a system can be completely
controllable, but a system mode might not be. Similarly, a system mode can be completely controllable,
even when the system is not. For example, we may have the situation of a completely controllable
system that exhibits a system mode with an ‘inevitable transition’ sub-domain.

These issues of design validation and verification, in terms of confirmation of mode exhibition,
reachability, and sustainability, as outlined in this section, are to be addressed in more detail in a
forthcoming paper. In particular the practical use of a broad range of techniques are to be discussed -
including theoretical analysis using established engineering science methods, the use of design
experimentation/simulation, the discrete modelling of ‘continuous’ systems, the analysis of ‘hybrid’
systems, and problems regarding real number modelling.

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

16

12. Notation
The following table provides a summary of the systems-theoretic notation used throughout this paper.
A more detailed description of these terms is available within the referenced text (i.e. Wymore 1993).

{ , , ... } Set

∩ Intersection of sets

∪ Union of sets

⊆ is a sub-set of (the set)

∅ The ‘empty’ set, also denoted as {}

⇒ ‘implies’ ...

× Cartesian product, for example: {1, 2}×{a, b} = { (1, a), (1, b), (2,a), (2, b) }

∈ is a member of ... (the set), belongs to ...

Number of elements of a set (or vector), the set ‘size’

BSD Buildable System Design.

CNS Constant function, a constant value - over some specified timescale

CR Cost Requirement, an order over the space of implementable designs

Dn Mode sub-domain ‘n’, where Dn = SZkn × IZkn for mode ‘n’ of system ‘k’

Dn→m Mode sub-domain ‘n’, from which mode sub-domain ‘m’ is reachable

DSZ Functional System Design, start state

ER Eligibility function (input/output requirement)

FNS(A,B) Set of all functions, mapping from domain A over the range B

FSD Functional System Design

HI Input Homomorphism

HIMIO Input/output homomorphism, such that: HO(ERelaborated(f)) = ERoriginal(HI(f)),
 f ∈ ITRelaborated

HO Output Homomorphism

HIMSY System homomorphism, such that: HS(NZelaborated(x,p)) = NZoriginal(HS(x), HI(p)),
 for every x ∈ SZelaborated, p ∈ Izelaborated
 and: HO(RZelaborated(x)) = RZoriginal(HS(x)), x ∈ SZelaborated

HS State Homomorphism

ID Identity Homomorphism

IJS[j,k) Set of integer numbers: { i : i ≥ j , i < k }

IOR Input/output Requirement

IR Input Requirement, the set of all inputs

ISD Implementable System Design

ITR Input Trajectory Requirement

ITZ System input trajectory, where ITZ = FNS(TZ, IZ)

IZ System Input set

NZ System next-state function, NZ ∈ FNS((SZ × IZ), SZ)

OLR Operational life (time) for the IOR. A non-zero integer value

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

17

OR Output Requirement

OTR Output Trajectory Requirement

OTZ System output trajectory, OTZ(f,x) = RZ(STZ(f,x)) where f ∈ ITZ, x ∈ SZ

OZ System Output set

PR Performance Requirement, an order over the set of implementable designs

RLS[x,y) Set of real numbers: { w : w ≥ x , w < y }

RZ System Read-out function: RZ ∈ FNS(SZ, OZ)

Sn⏐m Intersection of states of system modes ‘n’ and ‘m’

Sn→m Mode ‘m’ states, directly accessed from mode ‘n’ states

SDR System Design Requirement

SI Implementable system mode state(s), to initiate input/output function exhibition

SMBF System Mode Behaviour Function ∈ FNS((SZmode × IZmode), (ITZhost ×TZ+
host))

STR System Test Requirement

STZ System state trajectory, STZ(f,x) ∈ FNS(TZ, SZ) where f ∈ ITZ, x ∈ SZ

SYSMO System Mode Parameterisation, such that Zkn = SYSMO(Zk, SMBF, OZkn)

SZ System States

TR Trade-off Requirement

TSR Input/output requirement time-scale set

TSZ Functional System Design time-scale

TYR Technology Requirement

TZ System time-scale

TZ+
kn System mode time index

Zk System ‘k’

Zkn Mode ‘n’ of system ‘k’

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

18

13. Case Study - Aircraft Jet Engine Design
The example of the preliminary analysis and

design of an aircraft jet engine can be used to
demonstrate some of the principles of system
specification and design that have been discussed
within this paper (note that this example is
provided for demonstration purposes only - there
is, of course, no intention to produce a ‘real’
system design solution).

13.1 The Functional Design. We first suppose
that the customer requirement is for propulsive
thrust to be output in response to pilot throttle
demands - and that this is to be expressed within
the IOR specification. The inputs to the system
may therefore be described in terms of the (pilot)
throttle demand IRdemand, and the engine outputs
as ORthrust.

The overall objective is to identify an implementable system design that will provide a functional
design solution (an FSD) that will satisfy the input/output requirement for the engine (see section 6.1),
where:

 IOR = (OLR, IRdemand,ITRdemand,ORthrust,OTRthrust,ER) [13.1.1]

[Note that an IOR construct, in terms of the operational life (OLR), the input and input trajectory
sets (IR, ITR), the output and output trajectory sets (OR, OTR), and the eligibility function (ER) is
fully described in the referenced text (Wymore 1993, sect. 6.5).]

13.2 An Implementable Design Solution. An implementable engine design solution is expressed as a
mathematical model of a physical solution (i.e. ZJET) that exhibits a mode of behaviour (ZNORM) to
provide for an FSD solution that satisfies the IOR (see sect. 7.2), where:

 ZNORM = SYSMO(ZJET, SMBFNORM, OZNORM) where OZNORM ⊆ OZJET and where

 SMBFNORM ∈ FNS(SZNORM × IZNORM, ITZJET × TZ+
JET)

 ZF = HIMSY(ZNORM, HS, HI, HO)

 FSD = (ZF, DSZ, TSZ) and

 DSZ = HS(SI), SI ⊆ SZNORM and TSZ = TSR and

 IRdemand = HI(I1ZJET) and ORthrust = HO(O1ZJET) [13.2.1]

The inputs to the implementable engine design solution are extended to include the air mass-flow
I2ZJET, the provision of external power I3ZJET, and the provision of fuel I4ZJET. Similarly, the outputs
are extended to include an auxiliary power output O2ZJET.

 The input and output sets for the implementable system design ZJET are therefore given as the
following Cartesian products of system inputs and outputs:

 IZJET = I1ZJET × I2ZJET × I3ZJET × I4ZJET and

 OZJET = O1ZJET × O2ZJET [13.2.2]

- and the system input and output trajectories as:

 ITZJET = FNS(TZJET, IZJET) and

 OTZJET(f,x) = RZJET(STZJET(f,x)) where f ∈ ITZJET and x ∈ SZJET [13.2.3]

13.3 Design Complication (Engine Behaviours). The engine modes will reflect both the required
behaviour to satisfy the IOR input/output requirement, together with other behaviours that result from
the implementable system design. For the purpose of this study, therefore, the engine modes are
described as: (1) the engine normal operation ZNORM ; (2) and engine stall ZSTALL and (3) an engine
over-speed ZO/SPEED. The actual form for the engine ‘normal’ mode function (SMBFNORM) would, of

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

19

course, be required to be identified by the system designer. The other principal engine modes ZSTALL
and ZO/SPEED are similarly specified.

The designer then specifies the mode sub-domains such that:

 IZO/SPEED ⊆ IZJET then

 DO/SPEED→NORM⏐O/SPEED = (SZO/SPEED - SZ NORM⏐O/SPEED) × IZO/SPEED - DO/SPEED→O/SPEED

 DO/SPEED→NORM⏐O/SPEED ≠ ∅ (and assuming DO/SPEED→O/SPEED = ∅), therefore

 SZ NORM⏐O/SPEED ≠ ∅ and SZO/SPEED ⊄ SZNORM and SZO/SPEED ≠ SZNORM [13.3.1]

This result is not surprising. It is effectively stipulated (in the third line) that if the engine over-
speeds, then a capability of reverting to normal operation is to be possible. This analysis confirms that,
if there is no ‘isolated’ over-speed mode sub-domain, then for this particular control to be realisable,
the engine over-speed states must not be defined as a sub-set of normal operation - which, of course, is
intuitively correct.

The designer further stipulates that:

 IZO/SPEED ⊆ IZJET

 DNORM⏐O/SPEED→O/SPEED = (SZNORM⏐O/SPEED × IZO/SPEED) - DNORM⏐O/SPEED→NORM⏐O/SPEED

 DNORM⏐O/SPEED→O/SPEED = ∅ therefore

 (SZNORM⏐O/SPEED × IZO/SPEED) = DNORM⏐O/SPEED→NORM⏐O/SPEED since

 SZNORM⏐O/SPEED ≠ ∅ [13.3.2]

Again, this result is not surprising. It is stipulated (in the third line) that the implementation is to be
such that an over-speed condition is not to be reachable from normal operation. This analysis confirms
that for this to be possible then any ‘over-speed’ behaviour is constrained to remain within the
intersecting (boundary) states (i.e. SZNORM⏐O/SPEED) - assuming, that is, that the set-spaces for the
normal and over-speed modes are not disjoint. Once again these conclusions are intuitively correct.

It may be decided, however, to go further and specify that it would be undesirable to have any
possibility of a ‘sustained’ engine over-speed - in other words, to ensure that SO/SPEED→O/SPEED = ∅ for
any sub-set of IZJET . This can be achieved by use of the ‘inevitable transfer’ scenario, as discussed in
section 8.5. We then have the following model constructs:

 IZO/SPEED ⊆ IZJET

 SO/SPEED→O/SPEED ⊆ (SZO/SPEED - SZNORM⏐O/SPEED) then, for any

 DO/SPEED→O/SPEED = SO/SPEED→O/SPEED × I’, where I’ ⊆ IZO/SPEED then

 for every (x,p) ∈ DO/SPEED→O/SPEED, then

 y = NZO/SPEED(x,p), and y ∈ SO/SPEED→O/SPEED [13.3.3]

Then, in this particular instance, the expression
DO/SPEED→O/SPEED = ∅ is taken to mean that there can be
no sub-domain of mode ZO/SPEED in which an over-
speed condition can be sustained (regardless of the
engine input trajectory). Engine operation is to be such
that it will inevitably revert to a ‘safe operating
condition’ within state-space SZNORM⏐O/SPEED.

The other interactions between the engine modes
ZNORM and ZSTALL and between ZSTALL and ZO/SPEED
may be developed in a similar manner as for the
interactions between ZNORM and ZO/SPEED developed
above.

13.4 Normal Operation Sub-modes. A ZNORM engine mode may be implemented in the design of a
real system solution that provides the function of ‘controlled engine thrust’ - with a pilot input of
throttle position to initiate engine start, modulate the thrust, and to shut-down the engine.

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

20

It might therefore be judged to be expedient to represent the provision of this function in terms of
sub-modes, such as: (1) engine unassisted run-up or run-down ZFREE; (2) assisted engine run-up ZASST;
(3) engine ignition ZIGN; (4) thrust operation ZTHRUST. These sub-modes would therefore be expressed
in terms of the mode ZNORM, for example:

 ZTHRUST = SYSMO(ZNORM, SMBFTHRUST, OZTHRUST) and

 OZTHRUST ⊆ OZNORM [13.4.1]

- with similar expressions for ZFREE, ZASST, and ZIGN.

These sub-modes of ZNORM are defined in terms of the sub-mode domains and inputs required to
sustain them (as per the form defined by equation [10.1.1]) as follows:

 SMBFTHRUST ⊂ SMBFNORM and DMN(SMBFTHRUST) ⊂ (SZNORM × IZNORM) [13.4.2]

- and again, with similar expressions for SMBFFREE, SMBFASST, and SMBFIGN.

The interactions between the engine operational sub-modes is defined in terms of the intersection
of sub-mode states, together with definitions for sub-domains as follows:

 SZFREE⏐ASST ≠ ∅, SZASST⏐IGN ≠ ∅, SZIGN⏐THRUST ≠ ∅, SZTHRUST⏐FREE ≠ ∅,

 SZFREE⏐IGN ≠ ∅, SZASST⏐THRUST = ∅, and

 DFREE→FREE⏐ASST ≠ ∅, DASST→FREE⏐ASST ≠ ∅,

 DASST→ASST⏐IGN ≠ ∅, DIGN→ASST⏐IGN ≠ ∅,

 DIGN→IGN⏐THRUST ≠ ∅, DTHRUST→IGN⏐THRUST = ∅,

 DTHRUST→THRUST⏐FREE ≠ ∅, DFREE→THRUST⏐FREE = ∅,

 DFREE→FREE⏐IGN ≠ ∅, DIGN→FREE⏐IGN ≠ ∅,

 DASST→THRUST⏐ASST = ∅, and DTHRUST→THRUST⏐ASST = ∅ [13.4.3]

Note that some of the operational mode sub-
domains are defined as empty (∅). This signifies that
there will be no provision for direct transfer from that
sub-mode to the other intersecting sub-mode. For
example DTHRUST→IGN⏐THRUST = ∅ is used to signify that
if the engine is thrusting (i.e. the engine is ‘lit’) then
there is no purpose in (re)engaging an engine ignition
mode.

Obviously the above expressions form only the
preliminary framework for an implementable system
design solution. However they can be usefully used to
set the ‘ground rules’ such that the design can proceed
logically - and in accordance with the overall
specification of system requirements. Much further
work would be required in order that this top-level
design description could be fully defined - such that
the specification of requirements for the system
components could be subsequently produced.

This ‘case-study’ demonstrates, in particular, the importance of being able to rigorously define (in
terms of mathematical modelling) the real mode behaviour, together with the mode sub-domain
conditions under which mode transfers can occur.

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

21

14. Summary
Throughout this paper a particular approach to the identification of functional requirements, and to the
subsequent design of (compliant) system solutions, has been advanced and recommended - particularly
with respect to the formal mathematical modelling of ‘complicated’ system behaviours such that the
satisfaction of the system input/output requirement can be demonstrated. These recommendations can
be summarised as follows:

a) Use of a formal method, preferably one based on an established mathematical systems theory,
to provide the necessary rigor and discipline to the process of systems specification and design.

b) Emphasis on the completion of a detailed mathematical specification of requirements (and in
particular the formulation of the IOR) before the search for candidate design solutions is begun.

c) Ensuring that a comprehensive ‘high-fidelity’ mathematical model of the real-world system
solution is produced. The development of this model has to be an integral part of the top-level
design process. The model will need to be sufficiently detailed to be able to reproduce all the
significant, dynamic behaviours of a real system.

This paper has tended to concentrate on the practical application of mathematical systems theory,
rather than a detailed examination/explanation of the theory itself. Detailed descriptions of the
axiomatic principles behind systems theory are available from the references sources (in particular
Fertig and Zapata 1977, and Wymore 1993).

A systems-theoretic approach has therefore been used to develop a set of formal (mathematical)
‘rules’ which can aid the system designer in the production of compliant, correct, and unambiguous
system design solutions. These ‘rules’ concern the proper determination of the functional requirements
of a system, and the design of implementable system solutions (possibly with complicated behaviour
characteristics) needed to satisfy those requirements.

The decision to employ systems-theoretic methods within any systems engineering endeavour is
not some vacuous exercise to give a ‘badge of respectability’ to the work (in terms of comparisons with
other, specialist, engineering sciences). The reason is much more basic and pragmatic - the use of
systems theory can help us to consistently, and efficiently, produce good systems design solutions.

Of course no theory can be totally inclusive or accurate with respect to describing ‘real world’
phenomena. It is an aid to the understanding of these phenomena, and (in the context of systems
theory) it can give us valuable insights into the nature of complex, and complicated, system behaviours.
Most importantly, systems theory can help us where our ‘common sense’ intuition can lead us to
incorrect assumptions, and bad design decisions.

It is, perhaps, unfortunate that much of the current debate on the difficulties of providing for
successful systems engineering design concentrates exclusively on issues of ‘process management’.
Relatively little consideration is given (particularly outside of academia) with respect to the
development of systems-science methods - or to the practical application of these methods to ‘real
world’ problems. I would argue that it is the use of an established (and practical) systems-science
methodology - within the context of a sensible and efficient ‘process management’ régime - that is the
key to the reliable design, development (and effective deployment) of good solutions to difficult
‘systems’ problems.

System Function Implementation and Behavioral Modeling - A Systems Theoretic Approach

A D Shell 07/07/00 ID reference: SE000504.pdf

22

References
Bahill A. T., Dean F. F. “Discovering System Requirements”,

http://www.sie.arizona.edu/sysengr/requirements
Bahill A. T., Dean F. F. “What Is Systems Engineering? A Consensus Of Senior Systems Engineers”,

INCOSE, Proc. 6th Annual Int. Symp., 1996
Calude C. S. (Ed.) “People & Ideas in Theoretical Computer Science’, Springer Verlag Pub., 1998
Calvez J. P., “Embedded Real-Time Systems, A specification and Design Methodology”, J. Wiley &

Sons, 1993.
CNES/ESA “Board Of Inquiry Report on ARIANE-501”, July 1996.
Cooper A., “The Inmates Are Running The Asylum”, Macmillan Computer Publishing, 1999
Garcia R. A., LaPlue L., Rhodes R. “A Rigorous Method For Formal Requirements Definition”, 5th

International Symposium, INCOSE, St. Louis 1995.
EIA Standard 632-1, “Process for Engineering a System, Part 1: Process Characteristics”, July 1997.
Fertig J., and Zapata R., “A Mathematical Foundation For Systems Synthesis”, Proceedings Of The 1st

International Conference On Applied General Systems Research, 1977
Flight International “Untested Software Is Blamed For Failure Of Ariane 5 Launch”, 31st July 1996.
Franklin G. F., Powell J. D. “Digital Control Of Dynamic Systems”, Addison-Wesley Publishing,

1980.
Klir G., “A review Of Model-Based Systems Engineering”, International Journal Of General Systems,

Vol. 25, No 2, 1996.
Korn J., “Problem Of Identity Of Systems Engineering”, INCOSE (UK) Symposium, 1997.
Richards R. J., “An Introduction To Dynamics And Control”, Longman Group Ltd., 1979.
Shell A. D., “Function Based Design Of Complex, Complicated Systems”, 9th International

Symposium, INCOSE, Brighton 1999.
Szidarovszky F., Bahill A. T. “Linear Systems Theory”, CRC Press Inc., 1992
Wymore A. W., “Model Based Systems Engineering”, CRC Press Inc., 1993

Biography
Tony Shell has a BSc degree from Loughborough University Of Technology. He has acquired almost
30 years experience of systems engineering work within the UK aerospace industry with companies
that include Sperry Gyroscope (UK), BAe Space & Comms., Ferranti Aircraft Equipment Division,
BAe Systems & Equipment and Rolls Royce MAE. He is currently working for BAE SYSTEMS on
the specification and design of advanced avionics systems. He has been a member of the International
Council On Systems Engineering since 1995.

